
THE ERATO SYSTEMS BIOLOGY WORKBENCH:
ENABLING INTERACTION AND EXCHANGE BETWEEN

SOFTWARE TOOLS FOR COMPUTATIONAL BIOLOGY

M. HUCKA1,2, A. FINNEY1,2, H. M. SAURO1,2 H. BOLOURI1,2,3,4,
J. DOYLE1,2, H. KITANO1,2,5

1 ERATO Kitano Symbiotic Systems Project,
M-31 Suite 6A 6-31-15 Jingumae Shibuya-ku, Tokyo 150-0001, Japan

2 Control and Dynamical Systems 107-81,
California Institute of Technology, CA 91125, USA

3 Science and Technology Research Centre,
University of Hertfordshire, AL10 9AB, UK

4 Division of Biology 216-76,
California Institute of Technology, CA91125, USA

5 Sony Computer Science Laboratories,
3-14-13 Higashi-gotanda Shinagawa-ku, Tokyo 141-0022, Japan

Researchers in computational biology today make use of a large number of different
software packages for modeling, analysis, and data manipulation and visualization.
In this paper, we describe the ERATO Systems Biology Workbench (SBW), a
software framework that allows these heterogeneous application components—
written in diverse programming languages and running on different platforms—to
communicate and use each others’ data and algorithmic capabilities. Our goal is
to create a simple, open-source software infrastructure which is effective, easy to
implement and easy to understand. SBW uses a broker-based architecture and
enables applications (potentially running on separate, distributed computers) to
communicate via a simple network protocol. The interfaces to the system are
encapsulated in client-side libraries that we provide for different programming
languages. We describe the SBW architecture and the current set of modules, as
well as alternative implementation technologies.

Proc. of the Pacific Biocomputing Symposium 2002 (PSB 2002), ed. R. Altman et al., 2002.

1 Introduction

The ERATO Systems Biology Workbench (SBW) is a framework for allowing
both legacy and new application resources to share data and algorithmic ca-
pabilities. Our target audience is the computational biology community whose
interest lies in simulation and numerical analysis of biological systems. Our
work has been motivated by the desire to achieve interoperability between a
set of tools developed by our collaborators: BioSpice 1, DBsolve 2, E-Cell 3,
Gepasi 4, ProMoT/DIVA 5, Jarnac 6, StochSim 7, and Virtual Cell 8. Since



these applications are written in a variety of languages and run on a variety
of platforms, it was essential not to limit integration capabilities to resources
implemented in a single language or platform. SBW allows communication
between processes potentially located across a network on different hardware
and operating systems. SBW currently has bindings to C, C++, Java, Delphi
and Python, with more planned for in the future, and it is portable to both
Windows and Linux.

We are aware that our target community is largely not composed of pro-
fessional software programmers. Any software development carried out in this
community tends to be secondary to the main research effort. As a result,
we have endeavored to make integration of software components into SBW as
straightforward as possible. SBW is also an open-source framework, to allow
the community to evolve and grow SBW with their changing needs. In addi-
tion, many laboratories have budgetary constraints. Unlike the licensing terms
of a number of other frameworks, our use of an open-source license (GNU Lesser
General Public License, LGPL 9) guarantees that SBW will remain available
at no cost indefinitely, while simultaneously allowing developers the freedom
to release closed-source modules that work with SBW.

SBW does not attempt to be more than a mechanism to enable the integra-
tion of applications. The architecture of SBW does not exclude its integration
with other frameworks and integration technologies. In fact, we hope to in-
tegrate other frameworks to extend the functionality available to users and
developers. In many configurations, SBW will be a small component in a
larger system (size being quantified as CPU, disk and memory usage).

We begin by describing SBW from the user’s perspective in Section 2,
then from the developer’s perspective in Section 3. In Section 4, we go on to
compare its features to those of other tools for building interoperable software.
Finally, in Section 5 we describe the various modules made available in the
initial beta release of SBW in November 2001.

2 SBW from the User’s Perspective

When an application has been modified to interact with SBW, we describe it as
being SBW-enabled. This means the application can interact with other SBW-
enabled applications. The kinds of possible interactions depend on the facilities
that have been exposed to SBW by the applications’ programmers. Typical
SBW-enabled applications also provide for ways of exchanging models and
data using an XML-based common representation format, the Systems Biology
Markup Language (SBML)10. SBW is not a controller in the system—the flow
of control is entirely determined by what the individual modules and the user



do. SBW doesn’t define any particular type of user interaction with modules:
the user can control modules from either script language interpreter, GUIs or
some hybrid of GUI and interpreter. The interpreter approach is inevitably
more flexible enabling access to all modules in the SBW environment in a
single application environment. In the remainder of this section, we present a
scenario where the user is controlling events using via GUIs only.

A user will typically start up the first SBW-enabled application as they
would any other program. The user doesn’t need to do anything specific to
start SBW itself. Figure 1 shows an example of using a collection of SBW-
enabled software modules. The upper left-hand area in the figure (partly cov-
ered by other windows) shows an SBW-enabled version of JDesigner11, a visual
biochemical network layout tool. This module’s appearance is nearly identical
to that of its original non-SBW-enabled counterpart, except for the presence
of a new item in the menu bar called SBW. This is typical of SBW-enabled
programs: the SBW approach strives to be minimally intrusive. In this ex-
ample, the user has created a network model in JDesigner, then has decided
to run a time-series simulation of the model. To do this, the user has pulled
down the SBW menu and selected one of the options listed, Jarnac Analysis,
to invoke the SBW-enabled simulation program Jarnac 6. This has brought
forth a control GUI, shown underneath the plot window in the lower right-
hand area of Figure 1; the user has then input the necessary parameters into
the control GUI to set up the time-series simulation, and has finally clicked
the Run button in the GUI to start the simulation.

In this example, the control GUI used SBW calls to instruct the simulation
module (Jarnac) to run with the given parameters and send the results back to
the controlling GUI module, which then sent the results to a plotting module.
This example scenario illustrates the interactions involved in using SBW and
four modules: the visual JDesigner, the computational module Jarnac, a time-
series simulation control GUI, and a plotting module.

3 SBW from the Developer’s Perspective

SBW uses a broker-based, message-passing architecture that allows dynamic
extensibility and configurability. As mentioned above, software modules in
SBW can interact with each other as peers in the overall framework. Modules
are started on demand through user requests or program commands. Modules
are executables which have their own event loops. All remote calls run in their
own threads. As shown in Fig. 2, interactions are mediated through the SBW
Broker, a small program running on a user’s computer; the Broker enables
locating and starting other modules and establishing communications links



Figure 1. Example of applications interacting through SBW.

between them. Communications are implemented using a fast, lightweight
system with a straightforward programming interface.

Broker -based architectures are a common software pattern 12. They are
a means of structuring a distributed software system with decoupled compo-
nents that interact by remote service invocations. In SBW, the remote service
invocations are implemented using message passing, another tried and proven
approach 13,14. Because interactions in a message-passing framework are de-
fined at the level of messages and protocols for their exchange, it is easier to
make the framework neutral with respect to implementation languages and
platforms: modules can be written in any language, as long as they can send,
receive and process appropriately-structured messages using agreed-upon con-
ventions. The dynamic extensibility and configurability quality of SBW is that
components—i.e., SBW modules—can be easily exchanged, added or removed,
even at run-time, under user or program control.

From the application programmer’s point of view, it is preferable to isolate
communications details from application details. For this reason, we provide an



Figure 2. Illustration of the relationship between the SBW Broker and SBW modules. At
the API level, communications appear to be direct (i.e., module-to-module); however, the
implementation passes messages back-and-forth through the SBW Broker.

Application Programming Interface (API)15 that hides the details of construct-
ing and sending messages and provides ways for methods in an application to
be “hooked into” the messaging framework.

We strove to develop an API for SBW that provides a natural and easy-to-
use interface in each of the different languages for which we have implemented
libraries. By “natural”, we mean that it uses a style and features that pro-
grammers accustomed to that language would find familiar. For example, in
Java, the high-level API is oriented around providing SBW clients with proxy
objects whose methods implement the operations that another application ex-
poses through SBW.

An SBW module provides one or more interfaces or services. Each service
provides one or more methods. Modules register the services they provide with
the SBW Broker. The module optionally places each service it provides into
a category. By convention, a category is a group of services from one or more
modules that have a common set of methods.

As an example of how simple the high-level API is to use in practice, the
following is Java code demonstrating how one might invoke a simulator from
a hypothetical module:



// Define the interface for the Java compiler.
interface Simulator
{

void loadSBML(string);
void setTimeStart(double);
void setTimeEnd(double);
void setNumPoints(integer);
double[] simulate();

}

double[] runSimulation(String modelDefinition, double startTime,
double endTime, integer numPoints)

{
try
{

// Start a new instance of the simulator module.
Module module

= SBW.getModuleInstance("edu.caltech.simulator");

// Locate the service we want to call in the module.
Service srv = module.findServiceByName("simulation");
Simulator simulator

= (Simulator) srv.getServiceObject(Simulator.class);

// Send the model to the simulator and set parameters.
simulator.loadSBML(modelDefinition);
simulator.setTimeStart(startTime);
simulator.setTimeEnd(endTime);
simulator.setNumPoints(numPoints);

// Run the simulation and return the result.
return simulator.simulate()

} catch (SBWException e) {
// Handle problems here.

}
}

As the example above shows, using an SBW-enabled resource involves get-
ting a reference to the module that implements a desired service and invoking
methods on that service.

4 Comparison to Related Efforts

The idea of creating a framework that enables the integration of disparate
software packages is not new. When we began this project, we considered us-
ing an existing framework and simply augmenting it with additional facilities.
But after examining a number of other options, we were forced to conclude
that none of the existing systems provided an adequate combination of sim-



plicity, support for major programming and scripting languages, support for
dynamically querying modules for services they offer, support for distributed
computing on Windows and Linux (with a clear ability to be ported to other
platforms), and free availability of open-source implementations for Windows
and Linux.

4.1 Frameworks for Computational Biology

One of the projects most similar to SBW is ISYS 16. This system provides a
generalized platform into which components may be added in whatever com-
bination the user desires. The system provides a bus-based communications
framework that allows components to interoperate without direct knowledge
of each other, by using a publish-and-subscribe approach in which components
place data on the bus and other components can listen for and extract the data
when it appears. ISYS components include graphical visualization tools and
database access interfaces. This style of interoperability is an alternative to
the more direct communications in SBW, but could be used to the same ends.

The main drawbacks of ISYS for our goals is that it is not freely available
and distributable. Moreover, it is largely Java-based and does not offer direct
support for components written in other languages.

4.2 General-Purpose High-Level Frameworks

In terms of communications frameworks, SBW has many similarities to Java
RMI 17 and CORBA 18. Both of the latter technologies enable a programmer
to tie together separate applications potentially running on different comput-
ers, and both offer directory services so that modules can dynamically query
and discover the services being made available by other modules. Unfortu-
nately, Java RMI is only truly practical when all applications are written in
Java, conflicting with our goal of supporting as many languages as possible.
Although RMI-over-IIOP 19 is an option, this simply means that the non-Java
components would have to use CORBA.

CORBA is the industry standard for broker-based application object inte-
gration. We decided against using CORBA as the basis of SBW primarily be-
cause of issues of standards compliance, complexity and maintenance. CORBA
is a large and complicated standard and has a steep learning curve. We felt it
would have been too much to ask of most researchers, whose time is limited and
main goals are in developing domain-specific applications, to acquire CORBA
development skills. Further, there are no open-source, standard-compliant
implementations of CORBA that support sufficiently many languages in the
same implementation. The implication is that SBW modules written in dif-



ferent languages would have to interact with CORBA implementations from
different open-source projects. We were concerned about the difficulties of
managing not only compatibility of different CORBA packages, but also the
installation process, user documentation, and long-term maintenance.

Notwithstanding these issues, we are not in principle opposed to using
CORBA. Indeed, we plan to design an interface that will provide a CORBA
bridge to SBW for those developers who prefer to use this technology.

4.3 Low-Level Communications Frameworks

SBW uses a custom message-passing communications layer with a simple
tagged data representation format and a specialized protocol layered on top of
TCP/IP sockets. We examined several alternatives before implementing the
scheme used in SBW.

Two attractive, recent alternatives were SOAP 20 and XML-RPC 21. The
latter is essentially a much-simplified version of the former; both provide re-
mote procedure calling facilities that use HTTP as the protocol and XML as
the message encoding. We performed an in-depth comparison of XML-RPC
and SBW’s messaging protocols 22 and concluded that XML-RPC and SOAP
would not work for the goals of SBW. The HTTP and XML layers impose
a performance penalty not present in SBW’s simpler protocol and encoding
scheme. Further, the HTTP protocol is not bidirectional: HTTP is oriented
towards client-server applications in which a client initiates a connection to a
server listening on a designated TCP/IP port. The implication of using XML-
RPC for SBW is that each module would have to listen on a different TCP/IP
port. This would add needless complexity to SBW.

Another alternative for the message-passing functionality in SBW is
MPI 14. We declined using MPI primarily because at this time there does
not appear to be a standard Java interface, and because MPI is considerably
more complex than the simple message-passing scheme used in SBW. How-
ever, MPI remains an option for reimplementing the communications facility
in SBW if it proves useful to do so in the future.

5 SBW Modules

In this section, we describe a variety of different modules that we have imple-
mented and released with the SBW beta release in November 2001.



5.1 Inspector Module

The inspector module is a GUI based tool which allows a user to explore the
SBW environment. It enables other modules and their services and methods
to be inspected. In the future we hope to extend the inspector module to
enable individual methods of a module service to be executed, in which case
the inspector will provide an excellent tool for testing new modules.

5.2 JDesigner

JDesigner 11, developed by Herbert Sauro, allows users to draw biochemical
networks on screen. It can save models in SBML 10 format. We provide an
SBW interface to JDesigner which allows other modules connected to SBW
to gain access to the functionality of JDesigner. In particular, it is possible
for a remote module to request SBML code from JDesigner. In addition, we
also provide an interface which allows remote modules to control many details
of JDesigner, for example providing the ability to rearrange the network on-
screen.

JDesigner has a menu option “SBW” which lists the services registered
with the SBW Broker in the “Analysis” category (e.g. the MATLAB Model
Generator, described below). JDesigner passes the SBML representing the
drawn model to the selected service.

5.3 Network Object Model

The most frequently requested module is some means of parsing and interpret-
ing SBML. SBML is defined in terms of XML and for many developers in our
community it is a non-trivial task to code a parser for SBML. We have therefore
written a module, called the Network Object Model or NOM with methods
that load and generate SBML as well as methods for accessing and modifying
the object model constructed from the loaded SBML. The NOM module can
be used as a SBML clipboard for moving data between applications.

5.4 Optimization Module

A frequently need in modeling is the ability to fit parameters to a model.
This problem is recast as the minimization of some predefined fitting function
by adjusting model parameters. We have collaborated with Pedro Mendes to
allow user access to the extensive optimization algorithms in Gepasi.



5.5 Plotting Module

This module provides a 2D graph plotting service.

5.6 MATLAB Model Generator

This translation module creates either ODE or Simulink models for MAT-
LAB23 from SBML. This modules provides services in the “Analysis” category
and thus can be invoked from JDesigner or similar modules. We anticipate in-
tegrating the MATLAB application itself as a module in later releases enabling
SBW modules to be invoked from the MATLAB command line and scripts.

5.7 Simulation Control GUI

The simulation control GUI is a non-scripting interface to a simulation server
such as Jarnac. The simulation control GUI service is in the “Analysis” cat-
egory. The GUI enables users to set up simulation runs, edit parameters or
variables and plot the resulting runs. In addition the GUI can also be used to
compute the steady state and carry out metabolic control analysis. Any simu-
lator in the “Simulation” category can be controlled from this GUI interface.
The Gillespie, Gibson and Jarnac modules (see below) provide services in that
category.

5.8 Gillespie Stochastic Simulator

The stochastic simulator module is based on the Gillespie algorithm 24. The
code which forms the basis of this module was provided by Baltazar Aguda 25.
Once a model is loaded, the module allows a user to change parameters and
variables in addition to graphing of results and collection of run data.

5.9 Gibson Stochastic Simulator

This stochastic simulator uses an algorithm26, developed by Gibson and Bruck,
based on the Gillespie algorithm which includes optimizations to reduce simu-
lation run times.

5.10 Jarnac Simulator

Jarnac 6 is an ODE-based biochemical network simulator. Simulations are
controlled via a scripting language. Services supported by Jarnac include ma-
trix manipulation, time-course simulation, steady-state analysis and metabolic



control analysis. Adding an SBW interface to Jarnac permits two types of in-
teraction. In one mode, Jarnac can act as a server for carrying out simulations.
This allows users access to the capabilities of Jarnac without having to interact
with a scripting interface.

The second mode of operation is from the scripting interface itself. In this
mode, the user is able to explore and use SBW modules from a command line.
Interaction is achieved by requesting Jarnac to create a Jarnac object interface
to the desired module. This allows a user to use a module as if it were part of
Jarnac itself.

6 Summary

The SBW is a very flexible and straightforward system to integrate a range
of heterogeneous software components written in a variety of languages and
running on a variety of platforms. At the time of this writing, we have com-
pleted the implementation of the SBW Broker and the libraries that implement
the SBW protocol in Delphi, C, C++, and Java. Full documentation of the
SBW design is available from the project web site 27. A beta release of the
SBW software and several sample modules was made in November, 2001, and
is available from the project web site.

Acknowledgments

This work has been funded by the Japan Science and Technology Corporation
under the ERATO Kitano Systems Biology Project. The Systems Biology
Workbench has benefitted from the input of many people. We wish to ac-
knowledge in particular the authors of BioSpice, DBsolve, Cellerator, E-Cell,
Gepasi, ProMoT/DIVA, StochSim, and Virtual Cell, and the members of the
sysbio mailing list. We also thank Mark Borisuk, Mineo Morohashi and Tau-
Mu Yi for support, comments and advice.

References

1. A. P. Arkin, Simulac and Deduce, http://gobi.lbl.gov/~aparkin/
Stuff/Software.html (2001).

2. I. Goryanin, T. C. Hodgman, and E. Selkov, Bioinformatics 15(9), 749–
758 (1999).

3. M. Tomita et al., Bioinformatics 15(1), 72–84 (1999).
4. P. Mendes, Trends in Biochemical Sciences 22, 361–363 (1997).
5. M. Ginkel et al., in Proceedings of the 3rd MATHMOD, ed. I. Troch and

F. Breitenecker, 525–528 (2000).



6. H. M. Sauro in Animating the Cellular Map, ed. J-H. S. Hofmeyr, J. M.
Rohwer, and J. L. Snoep (Stellenbosch University Press, 2000).

7. D. Bray, C. Firth, N. Le Novère, and T. Shimizu, StochSim, http://www.
zoo.cam.ac.uk/comp-cell/StochSim.html (2001).

8. J. Schaff, B. Slepchenko, and L. M. Loew, in Methods in Enzymology, ed.
M. Johnson and L. Brand, 321, 1–23 (Academic Press, 2000).

9. Free Software Foundation, GNU Lesser General Public License, http:
//www.gnu.org/copyleft/lesser.html (1991).

10. M. Hucka, A. Finney, H. M. Sauro, and H. Bolouri, Systems Biol-
ogy Markup Language (SBML) Level 1, http://www.cds.caltech.edu/
erato (2001).

11. Herbert S. Sauro, JDesigner: A simple biochemical network designer,
http://members.tripod.co.uk/sauro/biotech.htm (2001).

12. F. Buschmann et al., Pattern-Oriented Software Architecture: A System
of Patterns (John Wiley & Sons, 1996).

13. Jim Farley, Java Distributed Computing (O’Reilly & Associates, 1998).
14. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-

gramming with the Message Passing Interface (MIT Press, 1999).
15. A. Finney, H. Sauro, M. Hucka, and H. Bolouri, Programmer’s manual

for the Systems Biology Workbench (SBW), http://www.cds.caltech.
edu/erato/sbw/docs/api/ (2001).

16. A. Siepel et al., Bioinformatics 17(1), 83–94 (2001).
17. M. Hughes, M. Shoffner, and D. Hamner, Java Network Programming

(Manning Publications Co., 1999).
18. OMG, CORBA Specification, http://www.omg.org (2001).
19. Sun Microsystems, RMI over IIOP, http://java.sun.com/products/

rmi-iiop/ (2001).
20. D. Box et al., Simple Object Access Protocol (SOAP) 1.1: W3C note 08

May 2000, http://www.w3.org/TR/SOAP/ (2000).
21. D. Winer, XML-RPC, http://www.xmlrpc.com/spec/ (2001).
22. M. Hucka, A. Finney, H. M. Sauro, and H. Bolouri, A comparison of

two alternative message-passing approaches for SBW, http://www.cds.
caltech.edu/erato/sbw/docs/xml-rpc-comparison/ (2001).

23. Mathworks, Matlab,
http://www.mathworks.com/products/matlab/ (2001).

24. D. Gillespie, J. Comput. Phys. 22, 403–434 (1976).
25. Baltazar Aguda, personal communication.
26. M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876–1889 (2000).
27. The ERATO Systems Biology Workbench Development Group, http:

//www.cds.caltech.edu/erato/ (2001).


