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Motivations

• Observation: proliferation of software tools

• Researchers are likely to continue using multiple
packages for the foreseeable future

• Problems with using multiple packages:
– Simulations & results often cannot be shared or re-used
– Duplication of software development effort

• No single package answers all needs

– Different packages have different niche strengths

– Strengths are often complementary

• No single tool is likely to do so in the near future

– Range of capabilities needed is large

– New techniques (⇒ new tools) evolve all the time
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Project Goals & Approach

• Develop software & standards that
– Enable sharing of simulation & analysis software
– Enable sharing of models

• Goal: make it easier to share tools than to reimplement
• Two-pronged approach

– Develop a common model exchange language
• SBML: Systems Biology Markup Language

– Develop an environment that enables tools to interact
• SBW: Systems Biology Workbench
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Systems Biology Markup Language (SBML)

• Biochemical network models

• A model is described using a list of components:

– Beginning of model definition
» List of unit definitions (optional)
» List of compartments
» List of species
» List of parameters (optional)
» List of rules (optional)
» List of reactions

– End of model definition
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Systems Biology Workbench (SBW)

• Simple framework for enabling application interaction

– Free, open-source (LGPL)

– Portable to popular platforms and languages

– Small, simple, understandable

• From the user’s perspective, SBW is invisible
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SBW From the User’s Perspective
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From the Programmer’s Perspective

• Simple, lightweight, message-passing architecture
– Cross-platform compatible & language-neutral

• Modules are separately-compiled executables
– A module defines services which have methods
– SBW native-language libraries provide APIs

• C, C++, Java, Delphi, Python available now
• … but can be implemented for any language

• SBW Broker acts as coordinator
– Remembers services & modules that implement them
– Starts modules on demand

• Broker itself is started automatically
– Notifies modules of events (startup, shutdown, etc.)
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• Registry records information about modules
– Module name
– How to start module
– What services the module provides
– The categorization of those services

The SBW Broker’s Registry

Service 
Categories

Services (Interfaces)

(Interface
Hierarchy)

• Hierarchy of service categories
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Example of Service Categories

Simulation

void loadModel(string SBML)
void setStartTime(double time)
void setEndTime(double time)
void run()

Service Methods

ODESimulation void setIntegrator(int method)
void setNumPoints(int num)

+
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Service Categories Group Applications

• Clients can be written to interact with classes of
modules in a generic way

• User menus can be grouped by categories
• Need help from community to define common

categories of interfaces

interface ODESimulation {
void loadModel(string SBML)
void setStartTime(double time)
void setEndTime(double time)
void run()
void setIntegrator(int method)
void setNumPoints(int num)

}

(Java)
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Why?

• Why not use CORBA?
– Complexity, size, compatibility
– Could not find fully-compliant open-source CORBA ORB

that supports all required programming languages
– SBW scheme does not require a separately compiled IDL
– But: planning to have gateway between CORBA & SBW

• Why not use SOAP or XML-RPC?
– Performance, data type issues, implementation quality

• Why not Java RMI?
– Java-specific

• Why not COM?
– Microsoft-specific, low portability
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SBW Status & Future

• Beta release: http://www.cds.caltech.edu/erato
– Java, C, C++, Delphi, Python libraries
– Windows & Linux
– Developer’s manuals & tutorials, examples
– Modules:

• SBML Network Object Model • Optimization module
• MATLAB model generator • Stochastic simulator
• Plotting module
• Jarnac ODE simulator • JDesigner visual editor

• Spring 2002: production release 1.0
– Perl and C# libraries
– Secure distributed operation
– CORBA gateway
– More modules: Bifurcation analysis, Gillespie “Tau-Leap”


