Overview of the Systems Biology Workbench

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri

ERATO Kitano Systems Biology Project California Institute of Technology, Pasadena, CA, USA

Principal Investigators: John Doyle, Hiroaki Kitano

Collaborators: Adam Arkin (BioSpice), Dennis Bray (StochSim), Igor Goryanin (DBsolve), Les Loew (Virtual Cell), Pedro Mendes (Gepasi/Copasi), Masaru Tomita (E-Cell)

Background

- Modeling, simulation & analysis are critical
 - Huge volumes of data
 - Many disparate findings

Rapid rate of software tool development

- Roles: data filtering, model creation, model simulation
- Many groups are creating many tools
 - Different packages have different niche strengths reflecting expertise & preferences of the group
 - Strengths are often complementary to those of other packages

Problems

- No single package answers all needs of modelers
- No single tool is likely to do so in the near future
 - Range of capabilities is large
 - New techniques (\Rightarrow new tools) evolving too rapidly
- Researchers are likely to continue using multiple packages for the foreseeable future
- Problems in using multiple tools:
 - Simulations & results often cannot be shared or re-used
 - Duplication of software development effort

Goal & Approach

- Systems Biology Workbench project goal: provide software infrastructure that
 - Enables sharing of simulation/analysis software & models
 - Enables collaboration between software developers
- Two-pronged approach:
 - Develop a common model exchange language
 - SBML: Systems Biology Markup Language
 - Develop an environment that enables tools to interact
 - SBW: Systems Biology Workbench

Systems Biology Workbench

- Open-source, integrated software environment that enables sharing of computational resources
 - Allows software developers to build interprocess communications facilities into their applications
- From the user's perspective:
 - One SBW-enabled application can interact with another
 - Each application or module offers services to others
 - E.g.: ODE solution, time-based simulation, visualization, etc.

From the User's Perspective

6

From the User's Perspective

2 🕺		
omputer WinE	ldt	
<u> </u>		
cuments		
	🔯 Jarnac Analysis [0]	
	File	1
letwork aces	Start Time: 0 State:	
<u>89</u>	End Time: 10 Not Running X-Axis Y-Axis	
3	Number of Points: 1000	1
ue on	Outout Variables: Hidden Variables: S1 S2	
87	S1 S1	
iefcase	S2 S2	
-		
e		
ernet olorer		
2	from the lists above. Press	
tlook	Plot to begin, Reset to clear all Reset	
	Start Stop Pause Restart	
Array	Comment Description	
	Edit Parameters	
nda Aliana	Current Variable Set: <current> Edit Variables Options Close</current>	
L Spy		
ac18b		12

From the User's Perspective

From the Programmer's Perspective

- Numerous desirable features
 - Small application programming interface (API)
 - Simple message-passing architecture
 - Easy to make cross-platform compatible
 - Easy to make distributed
 - Language-neutral architecture
 - We'll provide C, C++, Java, Delphi, Python libs for Windows & Linux
 - ... but libs can be implemented for any language
 - A registry of services for applications to query
 - Use of well-known, proven technologies

The SBW Framework

- SBW libraries implement RPC mechanisms
 - Provide language bindings for SBW
 - C, C++, C++ Builder, Java, Delphi, Python, etc.
 - Implement underlying message-passing protocols

Communications in SBW

Message types:

- Call: blocking
- Send: non-blocking
- Reply: reply to a call
- Error: exception handling
- Message payloads:
 - Call, send, reply: one or more data elements
 - Error: error code and diagnostic messages
- Data elements are tagged with their types
- Supported data types:

ByteBooleanIntegerDoubleStringList (heterogeneous)Array (homogeneous)

The SBW Registry

Registry records info about modules

- Module name
- How to start module
- Which service categories the module provides
- Hierarchy of service categories

Why?

• Why not use CORBA?

- Complexity, size, compatibility
- SBW scheme does not require IDL

• Why not use SOAP or XML-RPC?

- Performance, data type issues, quality of implementations
- Why not Java RMI?
 - Java-specific
- Why not COM?
 - Microsoft-specific, low portability
- Why not MPI?
 - Designed for homogeneous distributed systems rather than heterogeneous

Summary & Availability

- Preliminary test implementation completed
- Production version is now in development
 - Draft API definition & other info available
 - Your hand-outs
 - http://www.cds.caltech.edu/erato/sbw/docs
- Expect first public beta release in November at ICSB 2001 (<u>http://www.icsb2001.org</u>)