
Overview of the
Systems Biology Workbench

Michael Hucka, Andrew Finney,
Herbert Sauro, Hamid Bolouri

ERATO Kitano Systems Biology Project
California Institute of Technology, Pasadena, CA, USA

Principal Investigators: John Doyle, Hiroaki Kitano

Collaborators: Adam Arkin (BioSpice), Dennis Bray (StochSim),
Igor Goryanin (DBsolve), Les Loew (Virtual Cell), Pedro Mendes

(Gepasi/Copasi), Masaru Tomita (E-Cell)

2

Background
• Modeling, simulation & analysis are critical

– Huge volumes of data
– Many disparate findings

• Rapid rate of software tool development
– Roles: data filtering, model creation, model simulation
– Many groups are creating many tools

• Different packages have different niche strengths
reflecting expertise & preferences of the group

• Strengths are often complementary to those of other
packages

3

Problems
• No single package answers all needs of modelers
• No single tool is likely to do so in the near future

– Range of capabilities is large
– New techniques (⇒ new tools) evolving too rapidly

• Researchers are likely to continue using multiple
packages for the foreseeable future

• Problems in using multiple tools:
– Simulations & results often cannot be shared or re-used
– Duplication of software development effort

4

Goal & Approach
• Systems Biology Workbench project goal:

provide software infrastructure that
– Enables sharing of simulation/analysis software & models
– Enables collaboration between software developers

• Two-pronged approach:
– Develop a common model exchange language

• SBML: Systems Biology Markup Language
– Develop an environment that enables tools to interact

• SBW: Systems Biology Workbench

5

Systems Biology Workbench
• Open-source, integrated software environment

that enables sharing of computational resources
– Allows software developers to build interprocess

communications facilities into their applications

• From the user’s perspective:
– One SBW-enabled application can interact with another
– Each application or module offers services to others

• E.g.: ODE solution, time-based simulation,
visualization, etc.

6

From the User’s Perspective

7

From the User’s Perspective

8

From the User’s Perspective

9

Behind the Scenes

10

From the Programmer’s Perspective
• Numerous desirable features

– Small application programming interface (API)
– Simple message-passing architecture

• Easy to make cross-platform compatible
• Easy to make distributed

– Language-neutral architecture
• We’ll provide C, C++, Java, Delphi, Python libs for

Windows & Linux
• … but libs can be implemented for any language

– A registry of services for applications to query
– Use of well-known, proven technologies

11

The SBW Framework

• SBW libraries implement RPC mechanisms
– Provide language bindings for SBW

• C, C++, C++ Builder, Java, Delphi, Python, etc.
– Implement underlying message-passing protocols

S
B

W
 J

av
a

In
te

rf
ac

e
Module
Written
In Java

S
B

W
 C

 In
te

rf
ac

e

Module
Written
In C

SBW Broker

Dispatcher

Registry

Listener

12

Communications in SBW
• Message types:

– Call: blocking
– Send: non-blocking
– Reply: reply to a call
– Error: exception handling

• Message payloads:
– Call, send, reply: one or more data elements
– Error: error code and diagnostic messages

• Data elements are tagged with their types
• Supported data types:

Byte Boolean Integer Double String
List (heterogeneous) Array (homogeneous)

13

The SBW Registry
• Registry records info about modules

– Module name
– How to start module
– Which service categories the module provides

• Hierarchy of service categories

Service
Categories

Services

Methods

(Interfaces)

(Methods)

(Interface
Hierarchy)

14

Why?
• Why not use CORBA?

– Complexity, size, compatibility
– SBW scheme does not require IDL

• Why not use SOAP or XML-RPC?
– Performance, data type issues, quality of

implementations
• Why not Java RMI?

– Java-specific
• Why not COM?

– Microsoft-specific, low portability
• Why not MPI?

– Designed for homogeneous distributed systems rather
than heterogeneous

– Higher complexity

15

Summary & Availability
• Preliminary test implementation completed
• Production version is now in development

– Draft API definition & other info available
• Your hand-outs
• http://www.cds.caltech.edu/erato/sbw/docs

• Expect first public beta release in November at
ICSB 2001 (http://www.icsb2001.org)

