Overview of the

Systems Biology Workbench

Michael Hucka, Andrew Finney,
Herbert Sauro, Hamid Bolourl

ERATO Kitano Systems Biology Project
California Institute of Technology, Pasadena, CA, USA

Principal Investigators: John Doyle, Hiroaki Kitano

Collaborators: Adam Arkin (BioSpice), Dennis Bray (StochSim),
lgor Goryanin (DBsolve), Les Loew (Virtual Cell), Pedro Mendes
(Gepasi/Copasi), Masaru Tomita (E-Cell)

Background

« Modeling, simulation & analysis are critical
— Huge volumes of data
— Many disparate findings

 Rapid rate of software tool development
— Roles: data filtering, model creation, model simulation
— Many groups are creating many tools

o Different packages have different niche strengths
reflecting expertise & preferences of the group

« Strengths are often complementary to those of other
packages

 No single package answers all needs of modelers
 No single tool is likely to do so in the near future
— Range of capabillities is large
— New techniques (P new tools) evolving too rapidly

 Researchers are likely to continue using multiple
packages for the foreseeable future

 Problems in using multiple tools:

— Simulations & results often cannot be shared or re-used
— Duplication of software development effort

Goal & Approach

« Systems Biology Workbench project goal:
provide software infrastructure that

— Enables sharing of simulation/analysis software & models
— Enables collaboration between software developers

« Two-pronged approach:
— Develop a common model exchange language
« SBML: Systems Biology Markup Language
— Develop an environment that enables tools to interact
« SBW: Systems Biology Workbench

Systems Biology Workbench

 Open-source, integrated software environment
that enables sharing of computational resources

— Allows software developers to build interprocess
communications facilities into their applications

e From the user’s perspective:
— One SBW-enabled application can interact with another
— Each application or module offers services to others

e E.g.: ODE solution, time-based simulation,
visualization, etc.

From the User’s Perspective

«f Betwork Wisual Designer

From the User’s Perspective
4

‘WinEdt

Start Time: B Sue
End Tima: T Hot Running
Murber of Polnts: frong

Outpud Variables: Hiddan Yariablas

kst
Explores

> =~
Salect variables o be ploted i
feon the lists above. Press

Pilot 1o begin, Reset to clear all Rezal |

plots

For_|

Start T | |

Cunent Paramater Sat [oscillator =| | EditParamaters Steady State_ |

% Cument Varable Set |«currents =] Edit Variables.. aptions. [Cloge

AL Spy

&

Jarnacl8b

From the User’s Perspective

npuker WinEdt

i scillator [Plot #1]

ocuments

Filz

Start Time: |E| St
End Time: |1D E
MNurmber of Points: |1DDD

1
Ctput Wariables: Hidden ¥z
51
52

10
Time

Selectvarables to be plotted Plot I
frarn the lists abave. Press &
Plot to hegin, Reset to clear all

Reset
plots.

Start =jin] o] |

Current Parameter Set: [oscillator =] Edit Pararmeters... | Steady State... |

CurrentVariahle Set: |<current:= ;l EditVariahles. . | Options... | Close

Behind the Scenes

Visual Design Tool

Simulation Control Interface

Simulation Engine

From the Programmer’s Perspective

« Numerous desirable features
— Small application programming interface (API)
— Simple message-passing architecture
o Easy to make cross-platform compatible
« Easy to make distributed
— Language-neutral architecture

 We'll provide C, C++, Java, Delphi, Python libs for
Windows & Linux

e ... but libs can be implemented for any language
— A registry of services for applications to query
— Use of well-known, proven technologies

10

The SBW Framework

SBW Broker

—4
|| Registry

Listener
Dispatcher

SBW Java Interface

SBW C Interface

« SBW libraries implement RPC mechanisms
— Provide language bindings for SBW
« C, C++, C++ Builder, Java, Delphi, Python, etc.
— Implement underlying message-passing protocols

A h

Communications in SBW

e Message types:
— Call: blocking
— Send: non-blocking
— Reply: reply to a call
— Error: exception handling
« Message payloads:
— Call, send, reply: one or more data elements
— Error: error code and diagnostic messages
e Data elements are tagged with their types

e« Supported data types:
Byte Boolean Integer Double String
List (heterogeneous) Array (homogeneous)

12

The SBW Registry

 Registry records info about modules
— Module name
— How to start module
— Which service categories the module provides

e Hierarchy of service categories

Service (Interface
Categories Hierarchy)

® Services (Interfaces)

Methods (Methods)

13

« Why not use CORBA?

— Complexity, size, compatibility

— SBW scheme does not require IDL
« Why not use SOAP or XML-RPC?

— Performance, data type issues, quality of
Implementations

« Why not Java RMI?

— Java-specific
« Why not COM?

— Microsoft-specific, low portability
 Why not MPI?

— Designed for homogeneous distributed systems rather
than heterogeneous

14

Summary & Availability

e Preliminary test implementation completed

 Production version is now in development
— Draft API definition & other info available
e Your hand-outs
e http://www.cds.caltech.edu/erato/sbw/docs

e EXxpect first public beta release in November at
ICSB 2001 (http://www.icsb2001.orqg)

15

