The ERATO Systems Biology Workbench

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri

ERATO Kitano Systems Biology Project California Institute of Technology, Pasadena, CA, USA

Principal Investigators: John Doyle, Hiroaki Kitano

Collaborators:

Adam Arkin (BioSpice), Dennis Bray (StochSim), Igor Goryanin (DBsolve), Andreas Kremling (ProMoT/DIVA), Les Loew (Virtual Cell), Eric Mjolsness (Cellerator), Pedro Mendes (Gepasi/Copasi), Masaru Tomita (E-CELL)

Overview of Tutorial

- Short intro to the Systems Biology Workbench (SBW)
 - Motivations
 - Technology
- SBW from a user's perspective, demonstration of
 - SBW core components & features
 - Currently available SBW-enabled modules

Programming with SBW

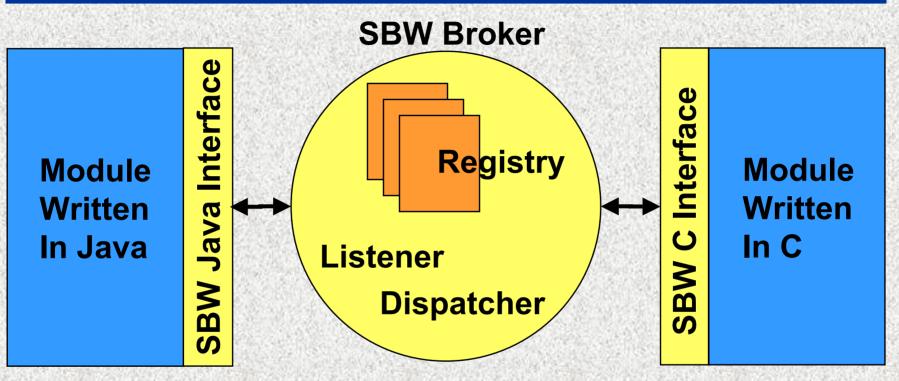
- Using Java
- Using C, C++

Motivations

- No single package answers all needs of modelers
 - Different packages have different niche strengths reflecting expertise & preferences of the developing group
 - Strengths are often complementary to those of other packages
- No single tool is likely to do so in the near future
 - Range of capabilities needed is large
 - New techniques (\Rightarrow new tools) are evolving too rapidly
- Researchers are likely to continue using multiple packages for the foreseeable future
- Problems with using multiple tools:
 - Simulations & results often cannot be shared or re-used
 - Duplication of software development effort

Goal & Approach

- Systems Biology Workbench project goal: provide software infrastructure that
 - Enables sharing of simulation/analysis software & models
 - Enables collaboration between software developers
- Initially focused on biochemical modeling
- Two-pronged approach:
 - Develop a common model exchange language
 - SBML: Systems Biology Markup Language
 - XML-based representation of biochemical networks
 - Develop an environment that enables tools to interact
 - SBW: Systems Biology Workbench
 - Uses SBML to transfer models between tools
 - Supports resource sharing

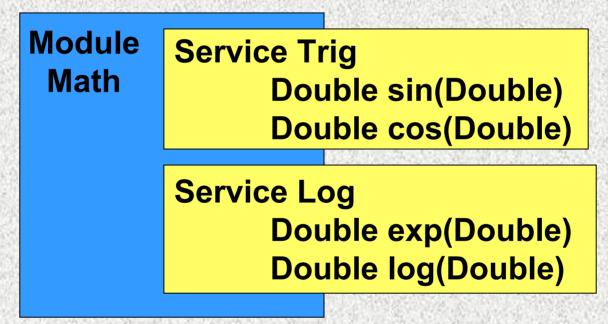

Systems Biology Workbench

- Open-source, integrated software environment that enables sharing of computational resources
 - Allows software developers to easily build interprocess communications facilities into their applications
- From the user's perspective:
 - One SBW-enabled application can interact with another
 - Each application or module offers services to others
 - E.g.: optimization, time-based simulation, visualization, etc.

Programming SBW

- Numerous desirable features
 - Small application programming interface (API)
 - Simple message-passing architecture
 - Easy to make cross-platform compatible
 - Easy to make distributed
 - Language-neutral architecture
 - We provide C, C++, Java, Python libs for Windows & Linux
 - ... but libs can be implemented for any language
 - A registry of services for applications to query
 - Use of well-known, proven technologies

The SBW Framework

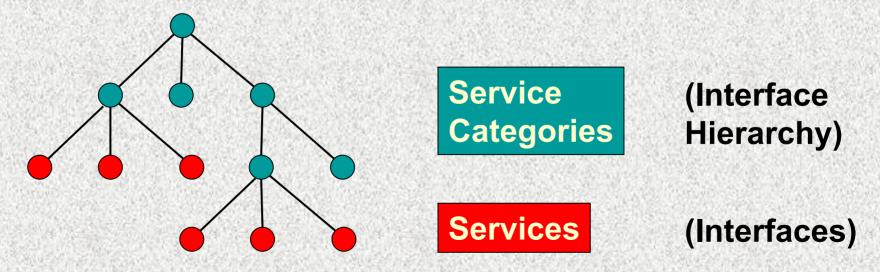


SBW libraries implement RPC mechanisms

- Provide language bindings for SBW
 - C, C++, Java, Python, etc.
- Implement underlying message-passing protocols

Modules & Services in SBW

- Modules are separately compiled executables
- Modules may offer one or more Services
- Services consist of one or more Methods



- Services are categorized into Service Categories
- Services do not have to be categorized

The SBW Registry

Registry records information about modules

- Module name
- How to start module
- What services the module provides
- The categorization of those services
- Hierarchy of service categories

Why?

- Why not use CORBA?
 - Complexity, size, compatibility
 - SBW scheme does not require an elaborate compiled IDL
 - No fully-compliant open-source CORBA ORB that supports more than one programming language
 - But: we plan to provide a gateway between CORBA & SBW
- Why not use SOAP or XML-RPC?
 - Performance, data type issues, implementation quality
- Why not Java RMI?
 - Java-specific
- Why not COM?
 - Microsoft-specific, low portability

SBW Status

Available Now:

- LGPL open-source beta release from

http://www.bioinformatics.org/sbw/

- Java, C, C++, Python libraries
- Tutorials, developer's manuals, examples

– Modules:

- SBML Network Object Model
- Gepasi optimization module
- Jarnac ODE simulator + MCA
- Plotting
- Gibson stochastic simulator
- MATLAB model generator
- JDesigner visual editor

SBW Future

- To deliver by April 2002
 - LGPL production release
 - Improve quality of beta release code, GUIs & docs
 - C# and Perl libraries
 - Secure distributed operation
 - CORBA access

Third-party modules under development

- Bifurcation analysis module
- Gillespie "Tau-Leap" module
- GENESIS interface