
The ERATO Systems Biology Workbench

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri

ERATO Kitano Systems Biology Project
California Institute of Technology, Pasadena, CA, USA

Principal Investigators: John Doyle, Hiroaki Kitano

Collaborators:
Adam Arkin (BioSpice), Dennis Bray (StochSim), 
Igor Goryanin (DBsolve), Andreas Kremling (ProMoT/DIVA), 
Les Loew (Virtual Cell), Eric Mjolsness (Cellerator), 
Pedro Mendes (Gepasi/Copasi), Masaru Tomita (E-CELL)



2

Overview of Tutorial
• Short intro to the Systems Biology Workbench (SBW)

– Motivations
– Technology

• SBW from a user’s perspective, demonstration of 
– SBW core components & features
– Currently available SBW-enabled modules

• Programming with SBW 
– Using Java
– Using C, C++



3

Motivations
• No single package answers all needs of modelers

– Different packages have different niche strengths reflecting 
expertise & preferences of the developing group

– Strengths are often complementary to those of other packages

• No single tool is likely to do so in the near future
– Range of capabilities needed is large
– New techniques (⇒ new tools) are evolving too rapidly

• Researchers are likely to continue using multiple 
packages for the foreseeable future

• Problems with using multiple tools:
– Simulations & results often cannot be shared or re-used 
– Duplication of software development effort



4

Goal & Approach
• Systems Biology Workbench project goal: 

provide software infrastructure that 
– Enables sharing of simulation/analysis software & models
– Enables collaboration between software developers

• Initially focused on biochemical modeling
• Two-pronged approach:

– Develop a common model exchange language
• SBML: Systems Biology Markup Language

– XML-based representation of biochemical networks
– Develop an environment that enables tools to interact

• SBW: Systems Biology Workbench
– Uses SBML to transfer models between tools
– Supports resource sharing



5

Systems Biology Workbench
• Open-source, integrated software environment 

that enables sharing of computational resources
– Allows software developers to easily build interprocess 

communications facilities into their applications

• From the user’s perspective:
– One SBW-enabled application can interact with another

– Each application or module offers services to others

• E.g.: optimization, time-based simulation, visualization, 
etc.



6

Programming SBW
• Numerous desirable features

– Small application programming interface (API)
– Simple message-passing architecture

• Easy to make cross-platform compatible
• Easy to make distributed

– Language-neutral architecture
• We provide C, C++, Java, Python libs for Windows & Linux
• … but libs can be implemented for any language

– A registry of services for applications to query

– Use of well-known, proven technologies



7

The SBW Framework

• SBW libraries implement RPC mechanisms
– Provide language bindings for SBW

• C, C++, Java, Python, etc.
– Implement underlying message-passing protocols

SB
W

 J
av

a 
In

te
rf

ac
e

Module
Written
In Java

SB
W

 C
 In

te
rf

ac
e

Module
Written
In C

SBW Broker

Dispatcher

Registry

Listener



8

Modules & Services in SBW
• Modules are separately compiled executables
• Modules may offer one or more Services
• Services consist of one or more Methods

• Services are categorized into Service Categories
• Services do not have to be categorized

Service Trig
Double sin(Double)
Double cos(Double)

Service Log
Double exp(Double)
Double log(Double)

Module
Math



9

The SBW Registry
• Registry records information about modules

– Module name
– How to start module
– What services the module provides
– The categorization of those services

• Hierarchy of service categories

Service 
Categories

Services (Interfaces)

(Interface
Hierarchy)



10

Why?
• Why not use CORBA?

– Complexity, size, compatibility
– SBW scheme does not require an elaborate compiled IDL
– No fully-compliant open-source CORBA ORB that supports 

more than one programming language
– But: we plan to provide a gateway between CORBA & SBW

• Why not use SOAP or XML-RPC?
– Performance, data type issues, implementation quality

• Why not Java RMI?
– Java-specific

• Why not COM?
– Microsoft-specific, low portability



11

SBW Status
• Available Now:

– LGPL open-source beta release from
http://www.bioinformatics.org/sbw/

– Java, C, C++, Python libraries 
– Tutorials, developer’s manuals, examples
– Modules:

• SBML Network Object Model
• Gepasi optimization module
• Jarnac ODE simulator + MCA
• Plotting
• Gibson stochastic simulator
• MATLAB model generator
• JDesigner visual editor

http://www.bioinformatics.org/sbw/
http://www.bioinformatics.org/sbw/


12

SBW Future
• To deliver by April 2002

– LGPL production release
• Improve quality of beta release code, GUIs & docs

– C# and Perl libraries
– Secure distributed operation
– CORBA access

• Third-party modules under development
– Bifurcation analysis module
– Gillespie “Tau-Leap” module
– GENESIS interface


	The ERATO Systems Biology Workbench
	Overview of Tutorial
	Motivations
	Goal & Approach
	Systems Biology Workbench
	Programming SBW
	The SBW Framework
	Modules & Services in SBW
	The SBW Registry
	Why?
	SBW Status
	SBW Future

