
Andrew Finney1,2,3, Michael Hucka1,2, Herbert Sauro1,2, Hamid Bolouri1,2,3, Akira Funahashi2, Ben Bornstein1,2,5,Andrew Finney1,2,3, Michael Hucka1,2, Herbert Sauro1,2, Hamid Bolouri1,2,3, Akira Funahashi2, Ben Bornstein1,2,5,
Ben Kovitz1,2, Joanne Matthews3, Bruce Shapiro1,2,5, Sarah Keating3, John Doyle1,2, Hiroaki Kitano1,2,4,6Ben Kovitz1,2, Joanne Matthews3, Bruce Shapiro1,2,5, Sarah Keating3, John Doyle1,2, Hiroaki Kitano1,2,4,6

1California Institute of Technology, Pasadena, CA, USA		 	 	 	 	 3University of Hertfordshire, UK	 	 		 	 			 5NASA Jet Propulsion Lab, Pasadena, CA, USA1California Institute of Technology, Pasadena, CA, USA		 	 	 	 	 3University of Hertfordshire, UK	 	 		 	 			 5NASA Jet Propulsion Lab, Pasadena, CA, USA
2JST/ERATO Kitano Symbiotic Systems Project, Tokyo, Japan	 4The Systems Biology Institute, Tokyo, Japan	 6Sony Computer Science Labs, Tokyo, Japan2JST/ERATO Kitano Symbiotic Systems Project, Tokyo, Japan	 4The Systems Biology Institute, Tokyo, Japan	 6Sony Computer Science Labs, Tokyo, Japan

Progress in molecular biotechnology has fueled an
explosion in the development of software tools.
Regrettably, developers often end up recreating similar
facilities in separate software packages.

In an effort to make it more attractive for developers to
share rather than reimplement resources, we have
implemented the Systems Biology Workbench (SBW), a
free, open-source, application integration
environment. Our goal has been to create a framework
simple enough that software authors find it easier to
provide an SBW interface than to recreate functionality
available in other tools. By doing so, we hope developers
can concentrate on creating best-of-breed
solutions in their areas of expertise.

Progress in molecular biotechnology has fueled an
explosion in the development of software tools.
Regrettably, developers often end up recreating similar
facilities in separate software packages.

In an effort to make it more attractive for developers to
share rather than reimplement resources, we have
implemented the Systems Biology Workbench (SBW), a
free, open-source, application integration
environment. Our goal has been to create a framework
simple enough that software authors find it easier to
provide an SBW interface than to recreate functionality
available in other tools. By doing so, we hope developers
can concentrate on creating best-of-breed
solutions in their areas of expertise.

IntroductionIntroduction

What Does SBW Provide?What Does SBW Provide?
SBW provides libraries for enabling applications to learn
about and communicate with each other. The applications
may be running on separate computers.

SBW lets heterogevneous packages connect to each other
using a remote procedure call mechanism based on a
message-passing network protocol. The interfaces to SBW
are encapsulated in client libraries for different languages.

SBW provides libraries for enabling applications to learn
about and communicate with each other. The applications
may be running on separate computers.

SBW lets heterogevneous packages connect to each other
using a remote procedure call mechanism based on a
message-passing network protocol. The interfaces to SBW
are encapsulated in client libraries for different languages.

The SBW Broker
starts applications
on demand,
and coordinates
communications
on a given
computer.

A Broker is started
automatically for
the user if one is
not running when
the first SBW
application starts.

The SBW Broker
starts applications
on demand,
and coordinates
communications
on a given
computer.

A Broker is started
automatically for
the user if one is
not running when
the first SBW
application starts.

• Languages supported: C, C++, Delphi, Java, Perl,
 and Python.

• Windows (98, 2000, XP) and Linux supported,
 with MacOS X planned in the near future.

• Secure, distributed operation via SSH, featuring
 remote startup of brokers and applications.

• CORBA gateway for bidirectional communication
 between SBW-based apps and CORBA-based apps.

• Collection of basic applications provided with the
 SBW distribution, including:

		• A simple stochastic simulator based on the
		 Gibson-Bruck variant of the Gillespie algorithm

		• An SBML-to-MATLAB ODE & Simulink translator

		• An SBML reader tool that allows a program to
		 extract (via an API) components of an SBML model

		• A "clipboard" module that stores an SBML
		 model description, and allows the easy transfer of
		 models between separate modules

		• A "browser" module that allows querying SBW
		 for registered modules and producing descriptions
		 of each module's interface in Java or CORBA IDL

		• A simple plotting module for time-series data

		• A generic simulation control GUI interface.

		• A collection of tutorial example modules in C,
 		 C++, Delphi and Java

• Extensive documentation—in addition to overview
 documents and published papers, every language
 library has its own programmer's manual and API
 reference.

• Languages supported: C, C++, Delphi, Java, Perl,
 and Python.

• Windows (98, 2000, XP) and Linux supported,
 with MacOS X planned in the near future.

• Secure, distributed operation via SSH, featuring
 remote startup of brokers and applications.

• CORBA gateway for bidirectional communication
 between SBW-based apps and CORBA-based apps.

• Collection of basic applications provided with the
 SBW distribution, including:

		• A simple stochastic simulator based on the
		 Gibson-Bruck variant of the Gillespie algorithm

		• An SBML-to-MATLAB ODE & Simulink translator

		• An SBML reader tool that allows a program to
		 extract (via an API) components of an SBML model

		• A "clipboard" module that stores an SBML
		 model description, and allows the easy transfer of
		 models between separate modules

		• A "browser" module that allows querying SBW
		 for registered modules and producing descriptions
		 of each module's interface in Java or CORBA IDL

		• A simple plotting module for time-series data

		• A generic simulation control GUI interface.

		• A collection of tutorial example modules in C,
 		 C++, Delphi and Java

• Extensive documentation—in addition to overview
 documents and published papers, every language
 library has its own programmer's manual and API
 reference.

Features of SBW Version 1.0Features of SBW Version 1.0

Here is an example of using several SBW-enabled tools to
create and simulate a two-compartment model of a
hypothetical single-gene oscillatory circuit.

Here is an example of using several SBW-enabled tools to
create and simulate a two-compartment model of a
hypothetical single-gene oscillatory circuit.

nucle
us RNAP

RNA nuc mRNA nuc

AAP

cy
to

plasm

mRNA cytRNA cyt

U

src waste

gene G

++

+

nucle
us RNAP

RNA nuc mRNA nuc

AAP

cy
to

plasm

mRNA cytRNA cyt

U

src waste

gene G

++

+

SBW in Action: A Sample SessionSBW in Action: A Sample Session

Model Capture:
Using a Visual Editor
Model Capture:
Using a Visual Editor
Using the SBW-enabled
JDesigner biochemical
network editor, a user can
create the model using a
graphical interface.

Using the SBW-enabled
JDesigner biochemical
network editor, a user can
create the model using a
graphical interface.

In this highly
simplified
model, there
is a gene G
which encodes
its own repressor
and is transcriptionally
activated at a constant rate, Vi.
Transcriptional activation of a gene G (which normally
involves many enzymatic reactions) is summarized here as
the production of active RNAP from source material, src,
and degradation to
waste. Transcribed
mRNA is then
transported from
the nucleus into
the cytoplasm,
where it is
translated into the
product P from
constituent amino
acids AA and where
it is also subject to
degradation.

In this highly
simplified
model, there
is a gene G
which encodes
its own repressor
and is transcriptionally
activated at a constant rate, Vi.
Transcriptional activation of a gene G (which normally
involves many enzymatic reactions) is summarized here as
the production of active RNAP from source material, src,
and degradation to
waste. Transcribed
mRNA is then
transported from
the nucleus into
the cytoplasm,
where it is
translated into the
product P from
constituent amino
acids AA and where
it is also subject to
degradation.

Model Simulation: Exchanging Models via SBW Model Simulation: Exchanging Models via SBW

Here, picking the menu item "Simulation Service" invokes
a generic simulation control GUI, which in turn invokes
Jarnac, an
ODE-based
simulator for
biochemical
reaction
networks.

Here, picking the menu item "Simulation Service" invokes
a generic simulation control GUI, which in turn invokes
Jarnac, an
ODE-based
simulator for
biochemical
reaction
networks.

Model Visualization and AnalysisModel Visualization and Analysis
Setting the run parameters for
the simulation and selecting
the output variables in the
simulation control GUI allows
the user to plot the values of
quantities over time. The plot
at the right shows how the
concentrations of AA and P in
the model oscillate over time.

A user can also perform other analyses on the model via
SBW, e.g., by invoking the bifurcation analysis module.

Setting the run parameters for
the simulation and selecting
the output variables in the
simulation control GUI allows
the user to plot the values of
quantities over time. The plot
at the right shows how the
concentrations of AA and P in
the model oscillate over time.

A user can also perform other analyses on the model via
SBW, e.g., by invoking the bifurcation analysis module.

An application such as
JDesigner can dynamically
create a menu of tools with
which it can interact,
by querying SBW to find
all installed SBW-enabled
packages that provide
services for processing
biochemical models.

An application such as
JDesigner can dynamically
create a menu of tools with
which it can interact,
by querying SBW to find
all installed SBW-enabled
packages that provide
services for processing
biochemical models.

More open-source developers are joining the SBW project,
and together we are enhancing and extending SBW in
many ways. Here is a preview of some coming attractions:

	• Support for JDK 1.4

	• Support for MacOS X

	• MATLAB scripting interface

	• New modules, including:

		• Graphical browser for the SBW environment

		• Rewritten SBML parser/writer for SBML Level 2

		• Improved generic GUI for simulators

		• Improved, full-featured plot module

		• New simulation engines

More open-source developers are joining the SBW project,
and together we are enhancing and extending SBW in
many ways. Here is a preview of some coming attractions:

	• Support for JDK 1.4

	• Support for MacOS X

	• MATLAB scripting interface

	• New modules, including:

		• Graphical browser for the SBW environment

		• Rewritten SBML parser/writer for SBML Level 2

		• Improved generic GUI for simulators

		• Improved, full-featured plot module

		• New simulation engines

Coming AttractionsComing Attractions

How to Get Started with SBWHow to Get Started with SBW

AcknowledgmentsAcknowledgments
The SBW project is funded by a generous grant from
the Japan Science and Technology Corporation under
the ERATO Kitano Symbiotic Systems Project.

We thank the following groups engaged in developing
software tools for systems biology, for their feedback
and guidance in developing SBW:

The SBW project is funded by a generous grant from
the Japan Science and Technology Corporation under
the ERATO Kitano Symbiotic Systems Project.

We thank the following groups engaged in developing
software tools for systems biology, for their feedback
and guidance in developing SBW:

• Jarnac, a biochemical simulation package for Windows

• JDesigner, a visual biochemical network layout tool

• Pasadena Twain, a simple interactive ODE solver

• A stochastic simulator based on Gillespie's algorithm

• A bifurcation analysis module

• An optimization module

• An SBML validator for checking SBML model files

• An inspector that lists running modules & their services

• Jarnac, a biochemical simulation package for Windows

• JDesigner, a visual biochemical network layout tool

• Pasadena Twain, a simple interactive ODE solver

• A stochastic simulator based on Gillespie's algorithm

• A bifurcation analysis module

• An optimization module

• An SBML validator for checking SBML model files

• An inspector that lists running modules & their services

Third-Party Modules Available For SBWThird-Party Modules Available For SBW

The SBW version 1.0 package and extensive
documentation are available from the project web site,

					http://www.sbw-sbml.org/.

SBW is distributed under the terms of the GNU LGPL.

The SBW version 1.0 package and extensive
documentation are available from the project web site,

					http://www.sbw-sbml.org/.

SBW is distributed under the terms of the GNU LGPL.

	• BioSpice (Arkin et al.)

	• Cellerator (Mjolsness et al.)

	• DBsolve (Goryanin et al.)

	• E-CELL (Tomita et al.)

	• Gepasi (Mendes et al.)

	• ProMoT/DIVA (Gilles et al.)

	• StochSim (Bray et al.)

	• Virtual Cell (Loew et al.)

	We also thank the following individuals for their
comments, suggestions and assistance: Tau-Mu Yi,
Mineo Morohashi, Pieter van der Zee, Fred Livingston,
Paul Shannon, Deanne Taylor, Andrew de Laix,
Venkat Jagadish, Lukasz Salwinski, Mark Johnson,
Richard Giuli, Greg Riddick, Michael Vanier.

We also thank the following individuals for their
comments, suggestions and assistance: Tau-Mu Yi,
Mineo Morohashi, Pieter van der Zee, Fred Livingston,
Paul Shannon, Deanne Taylor, Andrew de Laix,
Venkat Jagadish, Lukasz Salwinski, Mark Johnson,
Richard Giuli, Greg Riddick, Michael Vanier.

The Systems Biology Workbench (SBW) Version 1.0:
Framework and Modules

SBW
Broker

SBW
 C

++ lib
ra

ry

Applic
atio

n

writ
te

n in
 C

++ SBW
 Java library

Application

written in Java

SBW
 C library

Application

written in C SBW
 Perl

lib
ra

ry

Perl
scrip

t

