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Progress in molecular biotechnology has fueled an 
explosion in the development of software tools. 
Regrettably, developers often end up recreating similar 
facilities in separate software packages.  

In an effort to make it more attractive for developers to 
share rather than reimplement resources, we have 
implemented the Systems Biology Workbench (SBW), a 
free, open-source, application integration 
environment.  Our goal has been to create a framework 
simple enough that software authors find it easier to 
provide an SBW interface than to recreate functionality 
available in other tools. By doing so, we hope developers 
can concentrate on creating best-of-breed
solutions in their areas of expertise.
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SBW provides libraries for enabling applications to learn 
about and communicate with each other.  The applications
may be running on separate computers.

SBW lets heterogevneous packages connect to each other
using a remote procedure call mechanism based on a 
message-passing network protocol. The interfaces to SBW
are encapsulated in client libraries for different languages.
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• Languages supported: C, C++, Delphi, Java, Perl, 
   and Python. 
  
• Windows (98, 2000, XP) and Linux supported, 
   with MacOS X planned in the near future. 
  
• Secure, distributed operation via SSH, featuring 
   remote startup of brokers and applications.

• CORBA gateway for bidirectional communication
   between SBW-based apps and CORBA-based apps. 
    
• Collection of basic applications provided with the 
   SBW distribution, including:
   
		• A simple stochastic simulator based on the 
		  Gibson-Bruck variant of the Gillespie algorithm 
 
		• An SBML-to-MATLAB ODE & Simulink translator 
   
		• An SBML reader tool that allows a program to 
		   extract (via an API) components of an SBML model
   
		• A "clipboard" module that stores an SBML 
		  model description, and allows the easy transfer of 
		  models between separate modules 
   
		• A "browser" module that allows querying SBW 
		  for registered modules and producing descriptions 
		  of each module's interface in Java or CORBA IDL 
  
		• A simple plotting module for time-series data 
  
		• A generic simulation control GUI interface. 
   
		• A collection of tutorial example modules in C, 
 		   C++, Delphi and Java 
  
• Extensive documentation—in addition to overview 
   documents and published papers, every language 
   library has its own programmer's manual and API 
   reference. 
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Transcriptional activation of a gene G (which normally 
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the production of active RNAP from source material, src, 
and degradation to 
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mRNA is then
transported from
the nucleus into 
the cytoplasm, 
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translated into the 
product P from 
constituent amino 
acids AA and where
it is also subject to 
degradation.
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ODE-based 
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Setting the run parameters for 
the simulation and selecting 
the output variables in the 
simulation control GUI allows 
the user to plot the values of 
quantities over time. The plot 
at the right shows how the 
concentrations of AA and P in 
the model oscillate over time.

A user can also perform other analyses on the model via 
SBW, e.g., by invoking the bifurcation analysis module.
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More open-source developers are joining the SBW project, 
and together we are enhancing and extending SBW in 
many ways.  Here is a preview of some coming attractions:

	• Support for JDK 1.4

	• Support for MacOS X

	• MATLAB scripting interface

	• New modules, including:

		• Graphical browser for the SBW environment

		• Rewritten SBML parser/writer for SBML Level 2

		• Improved generic GUI for simulators

		• Improved, full-featured plot module

		• New simulation engines
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