Systems Biology Workbench

Module Programmer’s Manual

Andrew Finney, Michael Hucka, Herbert Sauro, Hamid Bolouri

{af inney,mhucka,hsauro, hbolouri}@cds .caltech.edu
Systems Biology Workbench Development Group
ERATO Kitano Systems Biology Project
Control and Dynamical Systems, MC 107-81
California Institute of Technology, Pasadena, CA 91125, USA

http://www.cds.caltech.edu/erato

Principal Investigators: John Doyle and Hiroaki Kitano

May 31, 2002

http://www.cds.caltech.edu/erato

Contents

1
2
3

To G A

Introduction
The Generic Analysis Interface
The Generic Simulation Interface
3.1 Simulation service e
3.2 SimulationCallback service i i e
The Network Object Model (NOM) Service
The Plot Service
The MATLAB Translator Service
eferences

-

NOCOWOoOOoOUA, AW

Introduction

The aim of this manual is provide programming reference documentation for the SBW modules
supplied with the SBW download. This manual describes the SBW services exposed to SBW
client modules by the supplied modules. This manual complements the SBW programming
manuals for C (Finney et al., 2002a), C++ (Finney et al., 2002b) and Java (Hucka et al.,
2002). These manuals provide an overview of the SBW system that is not provided here.

The SBW CORBA gateway is documented separately in Hucka and Finney (2002).

The following sections of this document describe the SBW services to the modules supplied with
the SBW installation. Many of the supplied service are categorized i.e. they share common
forms. These common forms are described in one section for each category. The remainder of
the services are described in a section for each module.

Table 1 shows the modules supplied with the SBW installation.

Module Name Module Type Comments
edu.caltech.plot Self Managed appropriate for plotting any series data
edu.caltech. NOM Self Managed parses a given SBML string, resulting struc-

ture is accessible through service

edu.caltech.NOMClipboard Unique parses a given string, resulting structure is
accessible to all clients

<simulator>.gui Self Managed <simulator> is the name of any other mod-
ule with a service in the category Sim-
ulation. This module provides a GUI
which drives the associated simulation ser-
vice given a SBML string.

edu.caltech.gibson Self Managed Stochastic simulator

edu.caltech.MatlabTranslator ~Unique Translates given SBML strings into MAT-
LAB (MathWorks, 1998) functions

Table 1: Modules supplied with SBW installation

Table 2 shows the services implemented by each supplied module together with their catego-
rization and the section in which the service is documented.

Module Name Service Name Category Section
edu.caltech.plot MultipleViewsOfTimeSeriesData / 5
edu.caltech. NOM NOM / 4
edu.caltech. NOMClipboard NOM / 4
edu.caltech.NOMClipboard NOMClipboard Analysis 2
<simulator>.gui <simulator service> Analysis 2
<simulator>.gui SimulationCallback / 3
edu.caltech.gibson gibson Simulation 3
edu.caltech.MatlabTranslator ~MatlabTranslator / 6
edu.caltech.MatlabTranslator ~SaveModelAsMatlabSimulinkFunction — Analysis 2
edu.caltech.MatlabTranslator SaveModelAsMatlabODEFunction Analysis 2

Table 2: Services implemented by Modules supplied with SBW installation

B

The Generic Analysis Interface

Services in the Analysis category have the following simple interface:

void doAnalysis(string SBML)

Perform some function on the given SBML model. If the function generates an indepen-
dent GUI the function should return as soon as that Ul has been launched otherwise the
function should block until the task is complete.

The services in the Analysis category are:

e NOMClipboard This service, on the unique module edu.caltech.NOMClipboard, takes
the given SBML Model and parses it. The resulting structure is available via the NOM
service on the same module, see section 4. This service thus provides a mechanism for

transferring models between modules.

e Simulator GUI For each service in the simulation category it is possible using a supplied
jar file to create a new module that provides a GUI for the service. These modules have a
service, which has the same name as the original simulation service. This derived service is
registered in the Analysis category. These Analysis services simply take the given SBML
model and provide a GUI for launching simulations of that model. The simulations are

then provided by the original simulation service.

The JAR file, SimDriver. jar, when invoked with the -sbwregister flag registers a new
module for each service registered in the category Simulation. The new module has a
name of the form <simulator>.gui where simulator is the name of the module with

the simulation service.

The interface between the simulation service and the simulation GUI are described in

more detail in section 3.

In summary if you develop a new simulation service, you can expose an Analysis ser-
vice providing a GUI for your service simply by registering your module then registering
SimDriver.jar. A GUI module for the Gibson (Gibson and Bruck, 2000) simulator is reg-
istered in this way by the SBW Windows installer. A GUI module for the Jarnac (Sauro,

2000), which is available as a separate download can also be registered in this way.

e SaveModelAsMatlabSimulinkFunction This service simply creates a dialog in which
the user can select a directory and filename. This service then saves a MATLAB Simulink
function equivalent to the supplied SBML model into a new file with the given name in

the selected directory.

e SaveModelAsMatlabODEFunction This service simply creates a dialog in which the
user can select a directory and filename. This service then saves a MATLAB ODE function
equivalent to the supplied SBML model into a new file with the given name in the selected

directory.

The Generic Simulation Interface

The form of services registered in the Simulation category is described in section 3.1.

modules which call this service must provide a callback service called SimulationCallback.

The form of the SimulationCallback service is described in section 3.2.

The supplied module edu.caltech.gibson implements the service gibson which is registered
in the Simulation category. Jarnac, which is available separately, also provides a service in this

category.

The Simulator GUI module, described in section 2 provides a generic client GUI for services in
the Simulation category and provides a SimulationCallback service.

3.1 Simulation service

Modules that implement services in the Simulation category are simulators. The form of these
services is:

string[] optionsSupported()
This method returns an array of strings which indicate the features of the simulator.
The returned array is a subset of the following strings:

e variableTimeSteps This string indicates that the number of time steps can’t be
set by the calling module.

e performsSteadyState This string indicates that the simulator has an implemen-
tation of the method doSteadyStateAnalysis.

string[] loadSBMLModel(string sbml)

Loads the given SBML model into the simulator i.e. parses the SBML. This method
returns the set of variables that the simulator parsed from the model. The calling module
can specify a subset of these variables, for which time series data will be returned.

void doTimeBasedSimulation(double startTime, double endTime, int noOfPoints, string[] fil-
ter)

Start a simulation on the loaded model. The simulation is performed from startTime
to endTime. filter specifies the subset of variables for which time series data should
be generated. filter is a subset of the variable set returned by loadSBMLModel. If the
service does not return the option string variable TimeStep then noOfPoints specifies
the number of data points in the time series data that should be generated, including
data points for the start and end times. If the service does return the option string
variable TimeStep then the simulation will generate an arbitrary number of data points
from startTime to endTime or slightly beyond endTime and noOfPoints is ignored.
Data is passed back to the calling module via the SimulationCallback service which
is described section 3.2. The simulation service will call the onRowData method on the
SimulationCallback service once for each data point as soon as the data point has
been computed. The order of the values passed to the callback service corresponds to
the variable strings passed in the filter argument to doTimeBasedSimulation. If the
simulation service does return the option string variableTimeStep then the simulation
service will insert an additional value at the end of the array of data values which is the
time of the data point.

If an error occurs the simulation service will call the onError method on the
SimulationCallback service.

void stop()

Pauses the simulation started by the last call to doTimeBasedSimulation. The simula-
tion can either be replaced by a new simulation by calling doTimeBasedSimulation or
the simulation can be restarted by calling restart.

void restart()

Causes the simulation started by the last call to doTimeBasedSimulation to be restarted.
Assumes that stop has been called since the call to doTimeBasedSimulation.

void doSteadyStateAnalysis(string][] filter)

This method is only present if the service returns the option string performsSteadyState
from optionsSupported. This method starts the execution of steady state analysis on
the parsed model. filter is the subset of variables for which values should be passed
to the caller.

The simulation service will call the onRowData method once on the SimulationCallback
service (see section 3.2) once the analysis is complete. The order of the values passed to
the callback service corresponds to the variable strings passed in the filter argument
to doSteadyStateAnalysis.

If an error occurs the simulation service will call the onError method on the
SimulationCallback service.

3.2 SimulationCallback service

The form of the SimulationCallback service is:

void onError(string errorMessage)

This method is called if an error occurs during a simulation or analysis.

void onRowData(double[] data)

This method is called when a data point is computed by a simulator during or at the
end of a simulation or analysis.

The Network Object Model (NOM) Service

This service is provided by the edu.caltech.NOM and edu.caltech.NOMClipboard modules
where the latter is self managed type module and the former is a unique type module. In both
cases the service is called NOM and has the exactly the same form. These services parse an
SBML model and enables the caller to browse the resulting structure.

The form of these services is as follows:

void loadSBML (string sbml)

parses the given SBML model. The methods below have no effect unless this method is
called first.

string getSBML()
returns the loaded SBML.

string getModelName()

returns the name of the loaded model.

double getValue(string symbol)

returns the initial value of the given symbol. The symbol can be a parameter, species
or compartment. Throws an exception if symbol has no initial value in the model.

boolean exists(string symbol)

returns whether symbol exists in the loaded model. The symbol can be a parameter,
species or compartment.

boolean hasValue(string symbol)

returns whether symbol has a value in the model. The symbol can be a parameter,
species or compartment. Throws an exception if symbol is not in the model.

int getNumCompartments()

returns the number of compartments in the model.

int getNumReactions()

returns the number of reactions in the model.

int getNumFloatingSpecies()

returns the number of species whose concentration can vary during a simulation.

int getNumBoundarySpecies()

returns the number of species whose concentration is fixed for the duration of a simula-
tion.

int getNumGlobalParameters()

returns the number parameters whose scope is over the whole model.

string getNthCompartmentName(int nthCompartment)

returns the name of a compartment in the loaded model. nthCompartment is the index
of the compartment, and should be between 0 and k - 1 inclusive, where k is the result
of getNumCompartments.

string getNthFloatingSpeciesName(int nthSpecies)

returns the name of a species in the loaded model, whose concentration can vary during
a simulation. nthSpecies is the index of the species, and should be between 0 and k -
1 inclusive, where k is the result of getNumFloatingSpecies.

string getNthBoundarySpeciesName(int nthSpecies)

returns the name of a species in the loaded model, whose concentration is fixed for the
duration of a simulation. nthSpecies is the index of the species, and should be between
0 and k - 1 inclusive, where k is the result of getNumBoundarySpecies.

string getNthFloatingSpeciesCompartmentName(int nthSpecies)

returns the name of the compartment containing a species in the loaded model. The
species concentration can vary during a simulation. nthSpecies is the index of
the species, and should be between 0 and k - 1 inclusive, where k is the result of
getNumFloatingSpecies.

string getNthBoundarySpeciesCompartmentName(int nthSpecies)

returns the name of the compartment containing a species in the loaded model. The
species concentration is fixed for the duration of a simulation. nthSpecies is the index
of the species, and should be between 0 and k - 1 inclusive, where k is the result of
getNumBoundarySpecies.

string getNthReactionName(int nthReaction)

returns the name of a reaction. nthReaction is the index of the reaction, and should be
between 0 and k - 1 inclusive, where k is the result of getNumReactions.

int getNumReactants(int nthReaction)

returns the number of reactants in a reaction. nthReaction is the index of the reaction,
and should be between 0 and k - 1 inclusive, where k is the result of getNumReactions.

int getNumProducts(int nthReaction)

returns the number of products in a reaction. nthReaction is the index of the reaction,
and should be between 0 and k - 1 inclusive, where k is the result of getNumReactions.

string getNthReactantName(int nthReaction, int nthReactant)

returns the name of the species that is a reactant in a reaction. nthReaction is the
index of the reaction, and should be between 0 and k - 1 inclusive, where k is the result
of getNumReactions. nthReactant is the index of the reactant, and should be between
0 and j - 1 inclusive, where j is the result of getNumReactants for reaction k.

string getNthProductName(int nthReaction, int nthProduct)

returns the name of the species that is a product in a reaction. nthReaction is the index
of the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions. nthProduct is the index of the product, and should be between 0
and j - 1 inclusive, where j is the result of getNumProducts for reaction k.

string getKineticLaw(int nthReaction)

returns the kinetic law or rate equation of a reaction. nthReaction is the index of
the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions.

int getNthReactantStoichiometry(int nthReaction, int nthReactant)

returns the stoichiometry of a product in a reaction. nthReaction is the index of
the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions. nthReactant is the index of the reactant, and should be between 0
and j - 1 inclusive, where j is the result of getNumProducts for reaction k.

int getNthProductStoichiometry(int nthReaction, int nthProduct)

returns the stoichiometry of a reactant in a reaction. nthReaction is the index of
the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions. nthProduct is the index of the product, and should be between 0
and j - 1 inclusive, where j is the result of getNumReactants for reaction k.

int getNumParameters(int nthReaction)

returns the number of parameters that are local to a reaction. nthReaction is the index
of the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions.

string getNthParameterName(int nthReaction, int nthLocalParameter)

returns the name of a parameter that is local to a reaction. nthReaction is the index
of the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions. nthLocalParameter is the index of the local parameter, and should
be between 0 and j - 1 inclusive, where j is the result of getNumParameters for reaction
k.

double getNthParameterValue(int nthReaction, int nthLocalParameter)

returns the value of a parameter that is local to a reaction. nthReaction is the index
of the reaction, and should be between 0 and k - 1 inclusive, where k is the result of
getNumReactions. nthLocalParameter is the index of the local parameter, and should
be between 0 and j - 1 inclusive, where j is the result of getNumParameters for reaction
k.

boolean getNthParameterHasValue(int nthReaction, int nthLocalParameter)

returns whether a parameter that is local to a reaction, has a value. nthReaction is
the index of the reaction, and should be between 0 and k - 1 inclusive, where k is the
result of getNumReactions. nthlLocalParameter is the index of the local parameter,
and should be between 0 and j - 1 inclusive, where j is the result of getNumParameters
for reaction k.

string getNthGlobalParameterName(int nthGlobalParameter)

returns the name of a parameter which has scope over the whole of the loaded model.
nthGlobalParameter is the index of the parameter, and should be between 0 and k -
1 inclusive, where k is the result of getNumGlobalParameters.

string[] getBuiltinFunctioninfo(string functionName)

returns a sequence of strings describing a built-in SBML function. functionName is the
name of a built-in function. The result consists of a descriptive string for the function,
followed by the parameters to the function which is finally followed by the expression
implemented by the function. This method returns an empty array if the given name is
not of a built-in SBML function.

string[] getBuiltinFunctions()

returns the set of built-in SBML function names.

The Plot Service

The service MultipleViewsOfTimeSeriesData is provided by the module edu.caltech.plot.
Despite its name this service is capable of plotting any series data i.e. matrix data where you
wish to compare values of different columns over a set of rows. This module is designed so
that data can be plotted while it is being generated. Any number of views of the data can be
created as the data is arriving. Views are updated as data arrives.

edu.caltech.plot is a self managed type module. Each instance of edu.caltech.plot stores
one set of data but allows several different views of that set.

The service MultipleViewsOfTimeSeriesData has the following form:

void addDataPoints(double commonAxis, double[] vector)

pass a vector of values for plotting. vector is a set of data values. commonAxis is a
value nominally indicating the position of all the values in vector however this value is
arbitrary: for example it can always be 0. Typically commonAxis is the time at which
the values in vector occurred.

It is assumed that every call to addDataPoints is consistent. commonAxis and each
element at the same position of vector should consistently represent the same entity.
Calls to addDataPoints can occur at any time and are independent of the other calls
on this service.

void deleteViews()

destroys all the current views of the data set.

The following methods should be called in the sequence that is given here to create one view
of the data. Any number of views can be created.

void setTitle(string)

set the title of the new view. This method is optional.

void newView()

create the new view.

void setCurrentVariableNames(string xAxisName, string[] variableNames)

supply names for the variables. xAxisName is the legend to be given to the x axis.
variableNames is the sequence of variable names corresponding to the data vectors
passed in calls to addDataPoints. variableNames is used to create the y axis legend.

void setCurrentPlottedVariables(int xVariable, boolean[] yVariableFilter)

identify what data should be plotted. xVariable is the index value of the variable
to be plotted on the x axis. xVariable indexes the data vectors passed in calls to
addDataPoints. If xVariable is -1 then the commonAxis values are used on the x axis.
The array yVariableFilter corresponds to the data vectors passed in calls to
addDataPoints. Each entry indicates whether the variable should be plotted in the
view or not.

void startView()

display the view.

The MATLAB Translator Service

The module edu.caltech.MatlabTranslator provides the service MatlabTranslator in addi-
tion to the Analysis category services that it provides (see section 2). The Service MatlabTranslator
has the form:

string translate(string sbml)

returns a MATLAB Simulink function corresponding to the given SBML model.

10

string translate(string sbml, string modelName)

returns a MATLAB Simulink function corresponding to the given SBML model. The
name of the returned Simulink function is modelName.

string translate(string sbml, boolean ODEFunction)

returns a MATLAB function corresponding to the given SBML model. If 0DEFunction
is true the returned function is an ODE function, otherwise the returned function is a
Simulink function.

string translate(string sbml, string modelName, boolean ODEFunction)

returns a MATLAB function corresponding to the given SBML model. If ODEFunction
is true the returned function is an ODE function, otherwise the returned function is a
Simulink function. The name of the returned function is modelName.

11

References

Finney, A., Hucka, M., Sauro, H. M., and Bolouri, H. (2002a). Systems Biology Workbench
C programmer’s manual. Available via the World Wide Web at http://www.cds.caltech.
edu/erato/sbw/docs/.

Finney, A., Hucka, M., Sauro, H. M., and Bolouri, H. (2002b). Systems Biology Workbench
C++ programmer’s manual. Available via the World Wide Web at http://www.cds.caltech.
edu/erato/sbw/docs/.

Gibson, M. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A, 104:1876-1889.

Hucka, M. and Finney, A. (2002). The SBW-CORBA Gateway.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2002). Systems Biology Workbench
Java™ programmer’s manual. Available via the World Wide Web at http://www.cds.
caltech.edu/erato/sbw/docs.

MathWorks, T. (1998). Using MATLAB. MATLAB: The Language of Technical Computing.
The MathWorks, Inc., Natik, MA.

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J.-
H. S., Rohwer, J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of
the 9th International Meeting on Bio ThermoKinetics. Stellenbosch University Press.

12

http://www.cds.caltech.edu/erato/sbw/docs/
http://www.cds.caltech.edu/erato/sbw/docs/
http://www.cds.caltech.edu/erato/sbw/docs/
http://www.cds.caltech.edu/erato/sbw/docs/
http://www.cds.caltech.edu/erato/sbw/docs
http://www.cds.caltech.edu/erato/sbw/docs

	Introduction
	The Generic Analysis Interface
	The Generic Simulation Interface
	Simulation service
	SimulationCallback service

	The Network Object Model (NOM) Service
	The Plot Service
	The MATLAB Translator Service
	

