
A Comparison of Two Alternative Implementations of
Message-Passing in the Systems Biology Workbench

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri
{mhucka,afinney,hsauro,hbolouri}@cds.caltech.edu

Systems Biology Workbench Development Group
ERATO Kitano Systems Biology Project

Control and Dynamical Systems, MC 107-81
California Institute of Technology, Pasadena, CA 91125, USA

http://www.cds.caltech.edu/erato

Principal Investigators: John Doyle and Hiroaki Kitano

12 April 2001
Revised: 4 June 2001

1 Background and Introduction

The Systems Biology Workbench (SBW) is a broker-based architecture that provides infrastructure enabling
software components to communicate with each other. A component in SBW (called an SBW module) can
take many forms: it may be primarily computational and lack a GUI, or it may be a computational module
having its own GUI, or it may consist solely of a GUI designed to control other tools. A critical requirement
for SBW is supporting modules written in any major programming language.

For a variety of reasons that are outside the scope of the present report, the SBW project had at the time of
this writing decided to avoid more complex technologies such as CORBA (OMG, 2001; Seetharaman, 1998;
Vinoski, 1997) and ILU (Janssen et al., 1999), and settled instead on using a message-passing approach
for communications between modules. We still needed to resolve two basic issues: the message format
(how a structured piece of information is encoded prior to transmission; i.e., the content encoding) and the
transport protocol (how a message is exchanged between agents, including issues of handshaking and network
port numbers).

Our main criteria for choosing a suitable message-passing scheme were: performance, support for data types
needed for SBW, simplicity, and portability. We examined a number of existing frameworks including XML-
RPC (McLaughlin, 2000; UserLand Inc., 2001; Winer, 2001), SOAP (Box et al., 2000), MPI (Gropp et al.,
1999), Java RMI (Steflik and Sridharan, 2000; Sun Microsystems, 2001), and a homegrown RPC scheme
developed by Andrew Finney and Herbert Sauro in the first phase of the SBW project. We narrowed the
possibilities to two candidates: our original “homegrown-RPC” implementation, and XML-RPC. In this
report, we summarize the results of our comparison between these two alternatives.

http://www.cds.caltech.edu/erato

2 Descriptions of the Two Alternative Schemes

It is first useful to clarify how a “message-passing system” differs from simply using sockets. Frankly, the
distinctions are muddy. Nearly every network standard currently in widespread use already is a form of
message passing: even a low-level protocol such as TCP/IP involves bundling data into messages that are
sent from one agent to another using network sockets. The key difference is that this level of the protocol is
hidden from a developer by an API that involves sockets and (perhaps) stream interfaces. So what we are
doing is layering a higher-level message-passing scheme on top of the more basic socket functionality, with
the details of the messages tailored specifically to the needs of the application we are developing.

2.1 Homegrown-RPC

The message-passing system implemented in the first phase of SBW development is a relatively simple
scheme that encodes data values as bytes and sends them in a stream across a socket connection. The
message encoding has a custom format, in which each data element in a message is prefixed by a byte that
describes its data type. This “homegrown-RPC” implementation supports the following common and useful
data types:

• Byte: An 8-bit quantity, equivalent to a Java byte.

• Boolean:: A true or false value.

• Integer: A 32-bit signed number, equivalent to a Java int.

• Double: A double precision floating-point number in IEEE 754 standard format.

• String: A sequence of characters, equivalent to char * in C.

• Array: A multidimensional homogeneous collection of data of arbitrary size.

• List: A sequence of heterogeneous data elements; the elements can be of any other types, including for
example other lists.

The operations in the basic API center around blocking and non-blocking remote procedure calls. The
blocking version (call) invokes a specific method in a specific module, handing it arguments serialized into
a message data stream. The call waits until the method on the remote module returns a value. The non-
blocking version (send) is similar, except that it does not wait for a return value. The homegrown-RPC
scheme also provides a means for returning exception codes to a caller.

We were reluctant to invent a custom message encoding format, given that a number of alternatives already
existed. We examined a number of well-known candidates, including Sun RPC XDR (Sun Microsystems,
1987), DCE NDR (Open Software Foundation, 1993), and the Java Object Serialization Specification (Sun
Microsystems, 1998). However, from the standpoint of our requirements, each of these alternatives suffered
from deficiencies. For example, both XDR and NDR are untagged formats, which means that two parties
communicating data must know ahead of time the exact structure being sent, and Java serialization has
substantial (and for our purposes, unnecessary) baggage for dealing with object classes.

2.2 XML-RPC

XML-RPC (http://www.xmlrpc.com) is a lightweight remote procedure calling protocol that uses HTTP
as the transport and XML as the message encoding. The following is an example of an XML-RPC message
body (minus the HTTP headers); this example calls a function named sumAndDifference on the object
sample, giving it two integer arguments as parameters:

<methodCall>
<methodName>sample.sumAndDifference</methodName>
<params>

<param><value><int>5</int></value></param>

2

http://www.xmlrpc.com

<param><value><int>3</int></value></param>
</params>

</methodCall>

XML-RPC supports a variety of data types, including heterogeneous lists and homogeneous arrays; other
types can be transmitted by encoding them in base64 format. The types supported are:

• Boolean:: A true or false value.

• Integer: A four-byte signed integer, equivalent to a Java int.

• String: A sequence of characters.

• Double: A double-precision signed floating point number.

• Date/Time: A date/time specification in ISO 8601 format.

• Base64: Base64-encoded binary data.

• Struct: A heterogeneous sequence of members, each of which contains named item-value pairs.

• Array: A sequence of (possibly heterogeneous) data items.

An XML-RPC transaction is synchronous and involves returning a result code; this code may be a fault/exception.

3 Experimental Methods

We tested Java implementations of both the XML-RPC and homegrown-RPC systems. The performance
tests consisted of timing how long it took each messaging implementation to exchange a certain number of
messages. We tested five different scenarios:

• Empty message.

• A short array of 10 double’s.

• A long array of 1000 double’s.

• A short string of 100 characters.

• A long string of 10 000 characters.

The tests of the XML-RPC and homegrown-RPC versions both used the same testbed driver; it is listed in
Appendix B for reference. The communications tests involved only the local machine; the message exchanges
were not inter-machine, which means that network latencies can be assumed to be zero, and the results can
be assumed to measure the performance of message handling only.

We attempted to eliminate some confounding variables:

• We performed timing tests under both Linux (Red Hat Linux 7.0, kernel 2.4.0) and Windows (Windows
2000) systems, using identical hardware in both cases (733 Mhz Pentium-III based computer with 384
MB RAM). The test results were comparable and did not reveal a platform-specific advantage of using
one OS over the other. Here we present only the results from the Linux-based tests.

• We tested different versions of the JDK, specifically Sun’s version 1.3 JDK (Java HotSpot Client VM,
build 1.3.0rc1-b17, “mixed mode”) and IBM’s version 1.3 JDK (build 1.3.0, J2RE 1.3.0 IBM build
cx130-20010207, JIT enabled), both under the Linux system. We did not find an advantage to using one
or the other JVM for either of the message-passing schemes. (The absolute performances differed when
using different JVMs, but the relative performance difference between XML-RPC and homegrown-RPC
stayed the same.) The results presented here were generated using the Sun implementation.

3

For the the XML-RPC portion of these tests, we started with an off-the-shelf solution available on the
Internet (version 1.0beta4 of the Helma XML-RPC implementation, http://helma.at/hannes/xmlrpc).
We substituted a different XML parser (MinML; Wilson, 2001), which we found to have higher performance
on the test suite used here. (Appendix A lists the XML parsers that we examined for this report.) Initial tests
showed that long arrays of double’s took inordinately long to transfer, so we performed one optimization:
we changed the XML-RPC implementation to encode arrays of double’s as byte arrays. (Strictly speaking,
this is not in the spirit of XML-RPC, but it is also not directly forbidden.) The test results here are based
on this modified implementation.

4 Results

The timing results are presented in Table 1. The table shows that in terms of absolute performance,
XML-RPC message exchanges for short messages took 1.3–1.6 ms mean time, whereas the homegrown-RPC
solution took 0.19–0.28 ms mean time. This represents a factor of 5 to 8 in difference. This difference is
similar for the case of empty messages; there again, the XML-RPC approach took approximately ten times
as long to exchange messages as the homegrown-RPC method. For long messages, exchange times were
similar for both methods.

Mean Run Times (ms)
Test XML-RPC Homegrown-RPC

short array of double’s 1.6 0.19
short character string 1.3 0.28
long array of double’s 11.3 8.6
long character string 8.9 8.2

empty message 1.2 0.10

Table 1: Mean run times for each case of the timing experiments on a machine running Red Hat Linux 7.0, Linux kernel
2.4.0, 733 Mhz Pentium-III, 384 MB RAM. Tests were performed using Sun’s JDK version 1.3 for Linux (Java HotSpot
Client VM, build 1.3.0rc1-b17, “mixed mode”). Tests involved only the local machine (i.e., the loopback network interface)
and therefore represent a best-case scenario free of network latencies.

5 Analysis and Discussion

The results in the previous section imply that message exchanges using the XML-RPC approach take 5 to
10 times as long as the homegrown-RPC scheme. On the face of it, these results favor the homegrown-RPC
scheme. However, to be fair, a number of additional factors should be considered:

1. How do the tested run times compare to the times expected for completing computations in SBW
modules?

2. Did both systems (XML-RPC, homegrown-RPC) perform exactly the same operations?

3. Do the test results represent best-case performances, or can the implementations of each scheme be
improved?

4. Aside from performance itself, what additional issues should be considered in choosing between the
two alternatives?

5.1 How Do the Tested Run Times Compare to Expected Module Run Times?

Absolute message-exchange times are relatively meaningless unless placed in the context of an application’s
run times. In SBW, one of the situations that will demand high performance is optimization, in which

4

http://helma.at/hannes/xmlrpc

an objective function involves repeatedly performing a simulation (e.g., using Jarnac; Sauro and Fell 1991;
Sauro 2000) under the control of an optimizer (e.g., Gepasi; Mendes 1997, 2001). The scenario is something
like the following:

We attempted to estimate how long a typical simulation might take by examining a few example Jarnac
simulations and then making some rough estimates for other cases. The results are shown in Table 2.

Case Execution times

Run to steady-state
Small model 1.5–5 ms
Large model (estimated) 15–50 ms

Time-course simulation
Small model 10–30 ms
Large model (estimated) 40–70 ms

Table 2: Approximate run times for simulations using Jarnac, based on a small sample problem involving a two parameter
model with three species and non-trivial kinetics. The estimates for a “big model” are essentially educated guesses made
by Jarnac’s author.

The estimates in Table 2 show that the run time for reaching steady-state in a model (the most likely situation
used in an optimization problem) is 1.5 ms at minimum. The actual run times for real cases are almost
guaranteed to be longer. Let us assume that actual ranges will be closer to the mean value of the extremes:
so, instead of 1.5–5 ms for a small model and 15–50 ms for a large model, we take (1.5 + 50)/2 ≈ 30 ms
(rounded down) as the average time to compute a result for a realistic model in a system such as Jarnac.

This has implications for the message communications method. Let us suppose that message round-trip
times are on the order of 1 ms, as in the XML-RPC tests. This implies that the total time spent on each
computational cycle will be 30 + 1 = 31 ms. A message time of 1 ms is equal to 1/31 of this total, or 3.2%.
On the other hand, the homegrown-RPC case takes approximately 0.1 ms, which implies that the total time
spent on each computational cycle will be 30 + 0.1 = 30.1 ms. A message time of 0.1 ms, then, is equal to
0.1/30.1 of this total, or 0.33%.

Note, however, that although the difference in percentages of time spent in communications appears large
(3.2% versus 0.33%), the difference in absolute times (31 ms versus 30.1 ms) is small: it is 2.9%.

5.2 Did Both Messaging Frameworks Perform the Same Operations?

Post-experimental analysis revealed that the homegrown-RPC test server code did not perform as many
operations as the XML-RPC code. Here is an explanation of why.

The XML-RPC code used in these experiments was a full implementation that included code for invoking
handlers for different message types. On the server side, each RPC message resulted in the server code
parsing out the name of the method being invoked, looking up the handler for that method in a hash
table, then invoking a specific method on the handler object. The handler object takes care of reading the
arguments (either a string array or an array of double’s) and returning a result.

Conversely, the code in the homegrown-RPC test server specifically looked for one of two cases (either a string
or an array), read that particular data type directly, and returned the result immediately. The following is
the relevant code:

5

while (true)
{

DataBlockItr itr = new DataBlockItr(in);
itr.getInt();
itr.getInt();
if (itr.getNextType() == DataBlockBuilder.STRING_TYPE)

itr.getString();
else if (itr.getNextType() == DataBlockBuilder.ARRAY_TYPE)

itr.get1DDoubleArray();
DataBlockBuilder builder = new DataBlockBuilder(100);
builder.add((int)100);
out.write(builder.getData());
out.flush();

}

This implementation does not reflect the complete set of operations that a production server would have
to perform: a real-world server would need to provide hooks for invoking different handler objects based
on different RPC method invocations. The XML-RPC test server therefore represents more of a real-world
implementation than the homegrown-RPC test server.

Compared to the homegrown-RPC version, the extra operations performed by the XML-RPC implementation
undoubtedly added some overhead and slightly inflated the results in Table 1. The fixed overhead is likely to
be small, but further testing would be necessary to determine exactly how much. Nevertheless, when reading
the results in Table 1, it should be kept in mind that the two cases are not performing identical operations.

5.3 Do the Tests Represent Best-Case Performances?

Can the implementations of the message-passing frameworks discussed here be improved? At the time of
this writing, we investigated this question only for the XML-RPC implementation; thus, our discussion here
is limited to that case, but we feel confident that improvements could also be made to the homegrown-RPC
implementation.

As mentioned above, the test results already reflect one optimization on the XML-RPC implementation,
namely to package arrays of double’s as byte streams and thereby reduce the time required to parse the
arrays by the XML parser. We also experimented with different XML parsers and chose the one that provided
the fastest performance (see Appendix A).

The results in Table 1 show that empty messages take almost as long to exchange as messages containing
actual data. This implies that most of the differences in run times between the XML-RPC and homegrown-
RPC cases are due to fixed overhead costs in XML-RPC. Visual inspection of the XML-RPC implementation
leads us to believe that a significant number of additional operations could in fact be streamlined. Brief
profiling showed that it performs a substantial number of string operations; an obvious area to improve is
reducing the use of the Java String data type. The XML-RPC implementation also uses threading; another
possible area to investigate is to handle threading differently.

It is difficult to estimate the impact that such optimizations may have. Let us make some rough estimates and
assume that further optimizations on the XML-RPC framework would improve performance by 10%–25%.
Table 3 shows the run times that could be expected in that case.

5.4 What Other Factors Should Be Considered?

Some additional issues are worth mentioning in the context of deciding on an approach for SBW.

5.4.1 Standardization

XML-RPC has an established following among a number of software developers world-wide; it is even
described and used in several chapters of a book on Java and XML (McLaughlin, 2000). Even Microsoft is
using a more elaborate version of XML-RPC, SOAP, as the cornerstone of its .NET strategy. Although SBW
will hide the message format and protocol behind libraries used by SBW developers, widespread support and

6

Mean Run Times (ms)
Test 10% 25%

short array of double’s 1.4 1.2
short character string 1.2 1.0
long array of double’s 10.2 8.5
long character string 8.0 6.7

empty message 1.1 0.9

Table 3: Run times expected for the XML-RPC version, under the assumption that the implementation can be optimized
enough to produce 10%–25% improvements over the results shown in Table 1.

the availability of books describing this message-passing approach lends it a certain cachet that a unique
homegrown-RPC approach lacks.

5.4.2 Support for Required Data Types

The data types made available in the homegrown-RPC implementation were chosen (1) to support the types
of data that we expected would be needed by systems biology simulators, and (2) to provide a reasonable
balance between flexibility and conciseness. We knew that data types such as IEEE floating point would
be important for simulation software. It is therefore important to note that XML-RPC does not specify
the use of IEEE floating point numbers: XML-RPC’s floating point type is double, whatever that may be
in a given programming language, and when written out in XML, the double is expressed as a sequence of
ASCII characters (e.g., "234.255"). As a consequence, there is no formalized way of expressing overflow and
NaN. Thus, using XML-RPC as the basis of the SBW communications framework would require that we
add mechanisms to support IEEE floating-point quantities (perhaps by manually encoding numbers using
byte arrays). This would likely have no impact on performance, but it would call into question the logic of
using XML-RPC when it does not support the basic data types needed by our application.

5.4.3 Availability of Implementations

XML-RPC implementations are currently available for a wide variety of languages, including Python, Delphi,
Java, C, C++, AppleScript, Guile, Tcl, and Perl. This suggests it would be easier to implement support for
new languages in SBW if we used XML-RPC, because a starting point for the message-passing layer would
likely be available. (But see the next subsection.)

5.4.4 Quality of Existing Implementations

Although many XML-RPC implementations are available, our informal survey of the available C/C++ and
Delphi implementations shows that they were either immature or designed in an awkward-to-use manner.
We believe that we would have to implement our own XML-RPC libraries for at least C/C++, and possibly
other languages. This negates one of the primary motivations for considering XML-RPC, namely that we
would be spared the effort of implementing a communications framework by using off-the-shelf software.

5.4.5 Firewall Transparency

Because XML-RPC uses HTTP as its transport protocol, it is able to cross most network firewall without
special requirements because most firewalls already allow HTTP traffic to pass through. Crossing a firewall
using the homegrown-RPC method would require the firewall to allow network traffic on a nonstandard
port. Most site administrators, especially in corporate network environments, are reluctant to introduces
special-case holes in their network security systems.

Unfortunately, it turns out that for SBW, using XML-RPC would not make it easier to cross network firewalls.
The problem is described in the following subsection. Thus, for our application, neither the homegrown-RPC
nor the XML-RPC approaches provide an immediate solution.

7

5.4.6 Bidirectional Communications

The broker architecture of SBW requires bidirectional communications between modules. One module may
call on another (via the broker as intermediary), and two modules may exchange information with each
other. In all cases, any module can serve as the initiator. An important question, then, is whether a given
communications framework cleanly supports this kind of full-duplex connectivity.

One of our realizations during the testing process was that XML-RPC does not support bidirectional con-
nections. The root of the problem is the HTTP protocol, which is oriented towards client-server applications
in which an agent initiates a connection to a server listening on a designated TCP/IP port. The implica-
tion of using XML-RPC for SBW is that if modules A and B needed to invoke operations on each other
simultaneously, module A would have to initiate a connection to B and B would have to initiate a separate
connection on module A. Although this would not be impossible, it has two important implications: (1)
every module would need to be assigned a unique TCP/IP port on a given machine, so that it could listen
for requests directed at it; and (2) the firewall transparency implied by using HTTP would be lost, because
modules would have to use ports other than the standard HTTP port and communications could not all
take place through a single connection through a firewall as in normal HTTP.

It appears the only work-around to this would be to violate the HTTP protocol and somehow tunnel a
bidirectional data stream over a single HTTP connection. However, such an implementation would not adhere
to the XML-RPC specification and would not be compatible with existing XML-RPC implementations.

6 Conclusions

The tests reported here show the homegrown-RPC system to be more efficient than the XML-RPC system
tested. It is possible that the performance of the XML-RPC implementation can be improved; however,
it will never be as fast as the homegrown-RPC scheme because XML-RPC involves a more verbose data
encoding and a more costly parsing/writing approach. On the other hand, for the average run times expected
for SBW modules, the time required to exchange a message using either scheme is relatively small, and the
relative difference between the schemes is even smaller: roughly 3%.

But there are other considerations. Although XML-RPC has certain advantages as a more established ap-
proach that is documented and recognized on the Internet, XML-RPC as a standard lacks support for certain
data types that are important for the Systems Biology Workbench. Further, although existing implemen-
tations are available for a variety of programming languages, the quality of some of the implementations
has not impressed us. If we cannot count on being able to use existing implementations, we are not saved
any work compared to implementing our own messaging/RPC scheme. From the standpoint of software
developers who wish to use SBW, the existence of XML-RPC implementations may be a moot point: most
developers will use our SBW libraries and these will hide the underlying message-passing system behind an
API. Few developers will care about the details of the messaging scheme.

A more significant concern is that XML-RPC is not oriented towards bidirectional message exchanges (as
discussed in Section 5.4.6). At best, this means that the theoretical firewall transparency of using XML-RPC
would be lost in our application; but in fact, this particular issue raises the more fundamental question of
whether XML-RPC has an architecture suitable for the needs of SBW.

Given that SOAP (Box et al., 2000) and XML-RPC are fundamentally quite similar, we believe most of the
objections raised above to using XML-RPC would apply to SOAP as well.

For these reasons, we have decided to continue using our homegrown-RPC scheme as the basis for the
message-passing infrastructure in SBW, rather than XML-RPC or its cousin SOAP. If it proves necessary,
there is always the option of implementing multiple messaging protocols inside the SBW broker and libraries,
and translating between them internally.

8

Appendix

A XML Parser Implementations Tested

A number of free XML parsers written in Java were available at the time of this writing. We tested the
following alternatives:

• Ælfred version 1.1 (Microstar Software Ltd., 1998).

• Crimson version 1.1 (Apache Software Foundation, 2001a).

• MinML version 1.0 (Wilson, 2001).

• OpenXML version 1.2 (OpenXML.org, 2001).

• XP version 0.5 (Clark, 1998).

• Xerces version 1.3.1 (Apache Software Foundation, 2001b).

Informal experiments using the test suite described in this document revealed that MinML gave the fastest
performance (i.e., the shortest message transmission times). We therefore used MinML in the tests discussed
in Sections 3–5.

B The Testbed Code

Shown below is the Java code for the test driver used in the timing tests presented in this report.

/*
** classname : TestBed.java
** Description : Test client
** Author(s) : Andrew Finney, Michael Hucka
** Organization: Caltech ERATO Kitano, California Institute of Technology
** Created : 2001-03-27
** Revision : $Id: TestBed.java,v 1.1 2001/03/29 19:42:33 mhucka Exp $
** $Source: /cvs/sysbio/src/tests/xml-rpc/TestBed.java,v $
**
** Copyright (C) 2001 California Institute of Technology, and Japan
** Science and Technology Corporation.
*/

/**
* @author Andrew Finney, Michael Hucka
* @author $Author: mhucka $
* @version $version$
**/

public class TestBed
{

private static double[] getFilledArray(int x)
{

double[] result = new double[x];
int i = 0 ;

while (i != x)
{

double v = i ;

result[i] = v + v / 100 ;

i++ ;
}

return result ;
}

private static String getFilledString(int x)

9

{
String alphabet = "abcdefghijklmnopqrstuvwxyz";
StringBuffer buffer = new StringBuffer(x);
int i = 0 ;

while (i < x)
{

buffer.insert(i, alphabet);
i += alphabet.length() ;

}

buffer.setLength(x);

return buffer.toString();
}

public static void main(String[] args)
{

SimpleSend client = new SimpleSendClient();
int i = 0 ;

// Test sending empty messages.

System.out.println("Sending nothing.");
long emptyCount = 10000;

long time = System.currentTimeMillis();
while (i != emptyCount)
{

client.send();
i++ ;

}
long emptyTime = System.currentTimeMillis() - time ;
System.out.println(emptyCount + " sends of nothing took: "

+ emptyTime);

// Test sending short array of doubles.

System.out.println("Sending 1000 double[10]’s.");
long shortArrayCount = 1000;

double[] array = getFilledArray(10);
i = 0 ;
time = System.currentTimeMillis();
while (i != shortArrayCount)
{

client.send(array);
i++ ;

}
long shortArrayTime = System.currentTimeMillis() - time ;
System.out.println(shortArrayCount + " sends of double[10] took: "

+ shortArrayTime);

// Test sending large array of doubles.

System.out.println("Sending 100 double[1000]’s.");
long longArrayCount = 100;

array = getFilledArray(1000);
i = 0 ;
time = System.currentTimeMillis();
while (i != longArrayCount)
{

client.send(array);
i++ ;

}
long longArrayTime = System.currentTimeMillis() - time ;
System.out.println(longArrayCount + " sends of double[1000] took: "

+ longArrayTime);

// Test sending short strings.

10

System.out.println("Sending 1000 strings of 100 chars.");
long shortStringCount = 1000;

String string = getFilledString(100);
i = 0 ;
time = System.currentTimeMillis();
while (i != shortStringCount)
{

client.send(string);
i++ ;

}
long shortStringTime = System.currentTimeMillis() - time ;
System.out.println(shortStringCount + " sends of 100 char string took: "

+ shortStringTime);

// Test sending long strings.

System.out.println("Sending 100 strings of 10000 chars.");
long longStringCount = 100;

string = getFilledString(10000);
i = 0 ;
time = System.currentTimeMillis();
while (i != longStringCount)
{

client.send(string);
i++ ;

}
long longStringTime = System.currentTimeMillis() - time ;
System.out.println(longStringCount + " sends of 10000 char string took: "

+ longStringTime);

// Print stats.

System.out.println("Times: ");
System.out.println(" Total elapsed time = "

+ (emptyTime + longStringTime +
shortStringTime + longArrayTime + shortArrayTime));

System.out.println(" Mean time for empty = "
+ (double) emptyTime/emptyCount);

System.out.println(" Mean time for short array = "
+ (double) shortArrayTime/shortArrayCount);

System.out.println(" Mean time for long array = "
+ (double) longArrayTime/longArrayCount);

System.out.println(" Mean time for short string = "
+ (double) shortStringTime/shortStringCount);

System.out.println(" Mean time for long string = "
+ (double) longStringTime/longStringCount);
}

}

11

References
Apache Software Foundation (2001a). Crimson version 1.1. Available via the World Wide Web at http:
//xml.apache.org/crimson/index.html.

Apache Software Foundation (2001b). Xerces version 1.3.1. Available via the World Wide Web at http:
//xml.apache.org/xerces-j/index.html.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte, S., and Winer,
D. (2000). Simple Object Access Protocol (SOAP) 1.1: W3C note 08 May 2000. Available via the World
Wide Web at http://www.w3.org/TR/SOAP/.

Clark, J. (1998). XP version 0.5. Available via the World Wide Web at ftp://ftp.jclark.com/pub/xml/.

Gropp, W., Lusk, E., and Skjellum, A. (1999). Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press, Cambridge, MA, USA.

Janssen, B., Spreitzer, M., Larner, D., and Jacobi, C. (1999). ILU 2.0beta1 reference manual. Available via
the World Wide Web at ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

McLaughlin, B. (2000). Java and XML. O’Reilly & Associates.

Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends
in Biochemical Sciences, 22:361–363.

Mendes, P. (2001). Gepasi 3.21. Available via the World Wide Web at http://www.gepasi.org.

Microstar Software Ltd. (1998). Ælfred version 1.1: Microstar’s Java-based XML parser. Available via the
World Wide Web at http://www.microstar.com/XML/.

OMG (2001). CORBA. Specification documents available via the World Wide Web at http://www.omg.org.

Open Software Foundation (1993). OSF DCE Application Development Guide. Prentice-Hall.

OpenXML.org (2001). OpenXML version 1.2. Available via the World Wide Web at http://www.openxml.
org.

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J.-H. S., Rohwer,
J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of the 9th International Meeting
on BioThermoKinetics. Stellenbosch University Press. ISBN 0-7972-0776-7.

Sauro, H. M. and Fell, D. A. (1991). SCAMP: A metabolic simulator and control analysis program. Mathl.
Comput. Modelling, 15:15–28.

Seetharaman, K. (1998). The CORBA connection. Communications of the ACM, 41(10):34–36.

Steflik, D. and Sridharan, P. (2000). Advanced Java Networking. Prentice-Hall.

Sun Microsystems (1987). XDR: External data representation standard (RFC 1014). Internet Request for
Comments 1014, Sun Microsystems, Inc. Available via the World Wide Web at http://www.faqs.org/
rfcs/rfc1014.html.

Sun Microsystems (1998). JavaTM object serialization specification. Technical report. Available via the
World Wide Web at http://java.sun.com/products/jdk/1.2/docs/guide/serialization/.

Sun Microsystems (2001). Java Development Kit 1.3. Available via the World Wide Web at http://java.
sun.com/j2se/1.3/.

UserLand Inc. (2001). XML-RPC home page. Available via the World Wide Web at http://www.xml-rpc.
com/.

12

http://xml.apache.org/crimson/index.html
http://xml.apache.org/crimson/index.html
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces-j/index.html
http://www.w3.org/TR/SOAP/
ftp://ftp.jclark.com/pub/xml/
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
http://www.gepasi.org
http://www.microstar.com/XML/
http://www.omg.org
http://www.openxml.org
http://www.openxml.org
http://www.faqs.org/rfcs/rfc1014.html
http://www.faqs.org/rfcs/rfc1014.html
http://java.sun.com/products/jdk/1.2/docs/guide/serialization/
http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.3/
http://www.xml-rpc.com/
http://www.xml-rpc.com/

Vinoski, S. (1997). CORBA: Integrating diverse applications within distributed heterogeneous environments.
IEEE Communication.

Wilson, J. (2001). MinML version 1.0. Available via the World Wide Web at http://www.wilson.co.uk/.

Winer, D. (2001). XML-RPC specification. Available via the World Wide Web at http://www.xmlrpc.
com/spec/.

13

http://www.wilson.co.uk/
http://www.xmlrpc.com/spec/
http://www.xmlrpc.com/spec/

	Background and Introduction
	Descriptions of the Two Alternative Schemes
	Homegrown-RPC
	XML-RPC

	Experimental Methods
	Results
	Analysis and Discussion
	How Do the Tested Run Times Compare to Expected Module Run Times?
	Did Both Messaging Frameworks Perform the Same Operations?
	Do the Tests Represent Best-Case Performances?
	What Other Factors Should Be Considered?
	Standardization
	Support for Required Data Types
	Availability of Implementations
	Quality of Existing Implementations
	Firewall Transparency
	Bidirectional Communications

	Conclusions
	Appendix
	XML Parser Implementations Tested
	The Testbed Code
	References

