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ABSTRACT
Systems biology researchers make use of a large number of
different software packages for computational modeling and
analysis as well as data manipulation and visualization. To
help developers easily provide the ability for their applica-
tions to communicate with other tools, we have developed a
simple, open-source, application integration framework, the
ERATO Systems Biology Workbench (SBW). In this paper,
we discuss the architecture of SBW, focusing on our moti-
vations for various design decisions including the choice of
the message-oriented communications infrastructure.

1. INTRODUCTION
The explosion of interest in systems-level modeling and anal-
ysis of biochemical networks has been accompanied by the
development of a diversity of software tools. While this di-
versity of resources is welcome, it also has had unwelcome
side-effects. One is a duplication of efforts by different re-
search groups attempting to incorporate similar capabilities
into their simulation/analysis tools. In an effort to make it
more attractive for package developers to share rather than
reimplement resources, we have developed the ERATO Sys-
tems Biology Workbench (SBW), an open-source, applica-
tion integration environment. Our aim has been to create a
framework so simple that software developers find it easier
to build in an SBW interface than to recreate functionality
available in other tools. By doing so, we hope developers
can concentrate on developing best-of-breed solutions in the
areas where they have special expertise.

SBW uses a portable broker-based architecture that enables
applications (potentially running on separate machines) to
learn about and communicate with each other. The commu-
nications facilities allow heterogeneous packages to be con-
nected together using a remote procedure call mechanism;
this mechanism uses a simple message-passing network pro-
tocol and allows either synchronous or asynchronous invoca-
tions. The interfaces to the system are encapsulated in client
libraries for different programming languages (currently C,
C++, Delphi, Java, and Python, with more anticipated),
but the protocol is open and small, and developers may im-
plement their own interfaces to the system if they choose.

Frameworks for integrating disparate software packages are
certainly not new. Some of the more well-known appli-
cation frameworks are Cactus Code [1], ISYS [33], Net-

Solve [11], and Ninf [29]; some of the more well-known mid-
dleware integration frameworks are CCAT [8], CORBA [38],
DCOM [13], ILU [24], Jini [5], Nexus [14], and PVM [15].
When we began work on SBW, we intended to begin with
an existing framework such as CORBA and simply augment
it with additional facilities. But after examining a num-
ber of alternatives, we were forced to conclude that existing
systems did not provide an adequate combination of the
features we believed were needed. These features include:
simplicity in both the API and the data exchange protocol,
support for major programming and scripting languages and
the seamless interaction between modules written in differ-
ent languages, support for dynamically querying modules
for services they offer, portability to both Windows and
Linux (with a clear ability to be ported to other platforms),
and free, unrestricted availability of implementations (with
source code) for all platforms.

In the following sections, we summarize some of the key
architectural design decisions and how we arrived at them
over the course of SBW’s evolution. We also explain why we
developed a custom message-passing protocol over a num-
ber of alternatives such as SOAP [7], XML-RPC [41] and
MPI [20].

2. ARCHITECTURAL EVOLUTION
2.1 Goals for User Interaction
We began the project with the general goal of enabling in-
teraction between a number of existing simulation and anal-
ysis tools. These tools were BioSpice [4], DBsolve [19],
E-Cell [37], Gepasi [25], Jarnac [30], StochSim [9], and
Virtual Cell [32]; they are packages in common use by re-
searchers studying a variety of topics, including the mod-
eling of metabolic pathways, cell signaling pathways, gene
regulation, and many others. We also wanted to provide
the ability for new tools (such as ProMoT/DIVA [17]) to be
easily introduced.

Software tools may come in the form of libraries imple-
menting certain specialized algorithms, or full-fledged ap-
plications with complete user interfaces. Our initial vision
for SBW centered around a stand-alone, GUI-based, central
management tool that would display to the user a list of all
the packages available for interaction within the framework.
In this system, a user would begin a session by starting the
management tool and then selecting a package from the list.
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The tool would start the requested package and bring forth
its user interface, if it had one. If a package did not have
its own interface, we envisioned the management tool would
provide a forms-based interface that could be constructed
based on the package’s description. When the user elected
to send the results of one package to another, we envisioned
the management tool as an intermediary, receiving and hold-
ing the data and letting the user pick the next package from
the list of known packages.

After some initial efforts in this direction, we abandoned
the idea of a central manager. While it had a certain orga-
nizational appeal, we discovered that the management tool
created an awkward bottleneck in the user’s interactions be-
tween packages, interrupting the user’s flow between tools.
A better scheme would be to have the system act as an in-
visible service to the collection of SBW-enabled packages in-
stalled on a user’s computer, giving center stage to the tools
themselves rather than the framework. We redesigned SBW
accordingly. In the new scheme, users typically start the first
application as they would any other program; they do not
need to do anything special to start SBW itself. Moreover,
SBW is not a controller in the system—the flow of control
is entirely determined by what the individual modules and
the user do.

Figure 1 shows an example of using a collection of SBW-
enabled software modules. The upper left-hand area in the
figure (partly covered by other windows) shows an SBW-
enabled version of JDesigner [31], a visual biochemical net-
work layout tool. This module’s appearance is nearly iden-
tical to that of its original non-SBW-enabled counterpart,
except for the presence of a new item in the menu bar called
SBW. This is typical of SBW-enabled programs: the SBW
approach strives to be minimally intrusive.

SBW software components (called SBW modules) can come
in different forms. A module may be primarily computa-
tional and lack a GUI, or it may be a computational mod-
ule having its own GUI, or it may consist solely of a GUI
designed to control other tools. In the example shown in
the figure, the user has created a network model in JDe-
signer, then has decided to run a time-series simulation of
the model. To do this, the user pulled down the SBW
menu (not shown in the figure) and selected one of the op-
tions, Jarnac Analysis, to invoke the SBW-enabled simu-
lation program Jarnac [30]. This brought forth a control
GUI, shown underneath the plot window in the lower right-
hand area of Figure 1; the user then input the necessary
parameters into the control GUI to set up the time-series
simulation, and finally clicked the Run button in the GUI
to start the simulation. The control GUI used SBW calls
to instruct the simulation module (Jarnac) to run with the
given parameters and send the results back to the control-
ling GUI module, which then sent the results to a plotting
module.

This example scenario illustrates the interactions involved in
using SBW and four sample modules: the visual JDesigner,
a control GUI for time-series simulations, the computational
module Jarnac, and a graphical plotting module. The ba-
sic process described above can be extended to any number
of modules in a system; for example, the user could have

chosen to send the results of the time-series simulation to
another module for further analysis, instead of plotting it
directly. The style of interaction described here, with differ-
ent modules taking center stage in turn, is meant to provide
context for what the user is doing at any given moment.
The underlying assumption is that each module/application
is itself best suited to providing that context, lending a sense
of familiarity and place to the task it supports.

2.2 Additional Technical Requirements
In addition to the goal of supporting the style of user interac-
tion described above, we also had the following requirements
for the framework:

• Simplicity : The framework must be simple enough
that interested developers can use it in their projects
with a minimum amount of learning and coding effort.

• Component modularity : As new tools and methods are
developed, it must be possible to implement them as
modules that can be hooked into the existing frame-
work without having to modify the framework itself.

• Language interoperability : The framework must sup-
port the interaction of modules written in different
programming languages.

• Free distribution. All interested users must be able
to obtain both SBW and its source code for free. Any
software that is incorporated into SBW and distributed
with it, such as GUI widgets or object libraries, must
itself be free of licensing fees or restrictions on redis-
tribution. (This is only a requirement on SBW itself,
and not on modules built for SBW or other software
developed using SBW.)

• Portability. The framework must be portable to Mi-
crosoft Windows (NT, 2000, XP) and Linux initially,
and clearly be portable to other platforms in the fu-
ture.

• On-demand plug-in loading : Modules that implement
particular capabilities should not have to be pre-loaded
into SBW every time it is started; instead, the system
should be data- and task-driven and dynamically load
modules on an as-needed basis. This helps keep the
size of the running system to a minimum.

• Support for distributed computing : The user should
have control over where processes are executed and
the ability to interact with remote services.

Some of these requirements immediately eliminated from
consideration certain existing frameworks. For example,
the portability and free availability requirements eliminated
DCOM [13], which for all practical purposes is limited to
Microsoft Windows platforms, and the language interoper-
ability requirement eliminated Jini [5] and Java RMI [23],
which are only practical if all applications use Java.

CORBA [38] and similar frameworks such as ILU [24] could
meet the goals above and serve to implement SBW. We have
been reluctant to use CORBA as the basis of SBW for two
main reasons. First, to interface software packages writ-
ten in different languages nearly always requires having to
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Figure 1: Example of multiple applications interacting through SBW.

use different CORBA implementations, because there are no
open-source implementations that provide bindings to a suf-
ficiently wide variety of programming languages. This has
a number of implications. For example, we would have to
test the compatibility of (and if necessary, provide adapters
for) all the CORBA distributions we support for SBW, for
all language combinations that SBW supports. The dif-
ficulty in doing this lies in the sheer size and complexity
of CORBA implementations. Second, the complexity of
CORBA is simply unsuitable for a software system that will,
at least initially, be largely used by academic researchers and
university-based programmers. Many of the innovations in
biological modeling come from these environments and take
the form of single modules implemented by these researchers
and programmers. Their time and resources are too lim-
ited to require them to read and understand a thick manual
on CORBA before they can interface their module into a
framework. Further, many programmers are predisposed to
discount CORBA as slow, big and inefficient; regardless of
the validity of these impressions, it would be too difficult for
us to attempt to overcome them.

Notwithstanding these issues, we are not in principle op-
posed to providing a way for CORBA users to interact with
SBW. We are currently designing an interface that will pro-
vide a CORBA bridge to SBW for those developers who
prefer to use this technology.

2.3 The SBW Architecture
A number of different architectures can support the style of
user interaction described in Section 2.1 and the technical
requirements listed in Section 2.2. True to the old program-
ming adage, “plan to throw the first version away,” our first
implementation taught us lessons that forced a redesign and
the development of a new version.

2.3.1 The Initial Version
Our first iteration on the SBW architecture was oriented
around a two-layer architecture. The bottom layer (which
we called the Biological Modeling Framework [18]) was a
general software framework that provided basic scaffolding
supporting a modular, extensible application architecture,
as well as a set of useful software components (such as
GUI tools) that could be used as black boxes in construct-
ing a system. SBW comprised the top layer; it consisted
of pluggable modules (“plug-ins”) that collectively imple-
mented what users experienced as the “Systems Biology
Workbench”. Figure 2 illustrates the general organization
of the architecture.

We demonstrated a working implementation of SBW using
this architecture in the winter of 2001. This prototype con-
sisted of an SBW core plug-in implemented in Java, a plug-
in plotting module, a plug-in that provided as an interface
to a visual pathway layout tool, a plug-in that provided an
interface to an ODE-based simulator, and a plug-in GUI
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Figure 2: The organization of the initial SBW ar-
chitecture, in which the system consisted of plug-
ins that provided interfaces to different facilities or
external tools.

control tool that controlled the simulator. Although the ar-
chitecture supported much of the functionality we sought,
we also learned that it was not ideally suited to our goals.
There were two main problems. First, most of the modules
in the system turned out to be stand-alone applications,
not libraries. Although the plug-in organization worked,
the requirement that each stand-alone application have a
matching plug-in interface introduced an extra layer that
had questionable value and high maintenance cost. Second,
the plug-in organization meant that a library written in a
language other than Java had to be interfaced to the core
using Java’s native language interface. This introduced a
performance penalty as well as considerable complexity.

2.3.2 The Second Version
Based on our experiences with the initial architecture de-
scribed above, we have developed a new system that avoids
the centralized plug-in organization. This new architecture
(used in the the released version of SBW) replaces the plug-
in core of Figure 2 with a broker whose job is to act as an
intermediary that enables communications between separate
software components (“modules”). A software module may
be a client, or a provider of services, or both, and it may
be a stand-alone application or a library. In all cases, the
module connects to the rest of the system through the SBW
client library. This library provides an API that a program-
mer can use to interact with SBW. Figure 3 illustrates the
overall system organization.

Broker architectures are relatively common and are consid-
ered to be a well-documented software pattern [10]; they
are a means of structuring a distributed software system
with decoupled components that interact by remote service
invocations. In SBW, the remote service invocations are im-
plemented using message passing, another tried and proven
software technology. Message-passing systems implement
inter-component communications as exchanges of structured
data bundles—messages—sent from one software entity to

Figure 3: The overall organization of the current,
second-generation SBW system. Gray areas indi-
cate SBW components (libraries and the broker).
To individual modules, communications appear to
be direct, although they actually pass through
the broker. A planned optimization is to use
shared memory calls to implement direct, module-
to-module communications scheme when the mod-
ules are collocated on the same machines. Such de-
tails are hidden behind the SBW interfaces and will
not require any code changes to the modules them-
selves.

another over a channel. Some messages may be requests to
perform an action, other messages may be notifications or
status reports. Because interactions in a message-passing
framework are defined at the level of messages and proto-
cols for their exchange, it is easier to make the framework
neutral with respect to implementation languages: modules
can be written in any language, as long as they can send,
receive and process appropriately-structured messages using
agreed-upon conventions.

Message-passing schemes traditionally suffer from one draw-
back: as the messaging scheme becomes more elaborate, it
becomes more complicated and error-prone to program at
the application level. From the application programmer’s
point of view, it is preferable to isolate communications de-
tails from application details. For this reason, we provide
two levels of programming interfaces in SBW: a low-level
API that consists of the basic operations for constructing
and sending messages, and a high-level API that hides some
of the details of constructing and sending messages and pro-
vides ways for methods in an application to be “hooked into”
the messaging framework at a higher level. The APIs are
discussed further in Section 3.

2.3.3 Comparisons to Other Architectures
The architecture of SBW has a number of similarities to
that of DCOP, the Desktop Communication Protocol used
in the KDE desktop environment for Linux [36]. DCOP
allows applications to pass data between them by serializ-
ing the data into messages, and applications manipulate the
messages using a data stream object. A broker program
dispatches messages between applications. Libraries imple-
ment the DCOP APIs for different supported languages, and
an optional interface definition language (IDL) mechanism is
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available for generating interface code for client applications.
Applications may choose to avoid using the IDL and instead
may specify the signatures of remote procedures using sim-
ple strings such as ‘‘int mymethod(string arg1, double

arg2)’’. SBW likewise uses strings to define the signature
of each method made available for a service in an applica-
tion; in addition, in the case of object-oriented languages
such as Java and Python, the SBW client libraries use the
signature strings to construct proxy objects corresponding
to each service. This provides a natural, object-oriented in-
terface to the services provided by a module, rather than the
basic, procedural function-call interface provided by DCOP.

SBW also has architectural similarities to ISYS [33]. This
system provides a generalized platform into which compo-
nents may be added in whatever combination the user de-
sires. It uses a bus-based communications framework that
allows components to interoperate without direct knowledge
of each other, by using a publish-and-subscribe approach in
which components place data on the bus and other compo-
nents can listen for and extract the data when it appears.
ISYS components include graphical visualization tools and
database access interfaces. The main differences between
the SBW and ISYS architectures are the following. First,
SBW uses point-to-point communications instead of the bus
architecture of ISYS. The bus likely provides a more flexible
interface than a direct, point-to-point organization, at the
cost of somewhat higher implementation complexity. Sec-
ond, ISYS interfaces are defined entirely in Java, whereas in
SBW, they can be written in any language. ISYS modules
written in other languages must be wrapped with a Java
interface layer to let them interact with the rests of the sys-
tem. By contrast, in SBW, interfaces are expressed in terms
of messages, and the message-handling code can be imple-
mented in native-language API libraries, avoiding the need
for Java wrappers.

2.3.4 Comparison to Other Message-Oriented
Frameworks

The communications infrastructure of SBW could have been
implemented in a number of ways. Our main criteria for
choosing a suitable message-passing scheme were: perfor-
mance, support for data types needed for SBW, simplicity,
and portability. We examined a number of existing frame-
works including XML-RPC [41], SOAP [7], MPI [20], and
Java RMI [23], but in the end decided to implement our
own simple communications framework. In Appendix A,
we present a comparison of SBW’s communications imple-
mentation and a specific viable alternative, XML-RPC, as
an example of the decision processes that drove the design
choices in SBW.

3. PROGRAMMING WITH SBW
A module may make a set of operations available program-
matically to other software modules. In SBW, sets of meth-
ods or functions are grouped into one or more services. A
service is an interface to a resource inside a module. This
interface consists of a collection of methods that encapsulate
access to some set of functionality.

A given module may implement zero or more services. More
than one module may provide similar services, so it is useful

to be able to group services into categories. SBW supports
optional service categories of this kind explicitly in the APIs,
but it is entirely up to applications to decide how to struc-
ture and manage the categories.

Fig 4 illustrates schematically the SBW client library in-
terface. We strove to develop a high-level API for SBW
that provides a natural interface in each of the different lan-
guages for which we have implemented libraries so far. By
“natural”, we mean that it uses a style and features that pro-
grammers accustomed to that language would find familiar.
For example, in Java, the high-level API is oriented around
providing SBW clients with proxy objects whose methods
implement the operations that another application exposes
through SBW.

We believe that by using the libraries and high-level API,
application developers will find it relatively easy to intro-
duce SBW interoperability into their software. The facilities
provided by the high-level SBW API can be summarized as
follows:

1. Dynamic service and module discovery : These are fa-
cilities for querying SBW about the services, service
categories, and modules running at any given moment.

2. Module, service and method registration: The broker
keeps a registry that other modules can use to search
for particular modules and services. The registration
facilities allow a module to record with the Broker the
services and methods that the module provides, as well
as to provide help text describing the service methods
and the command that should be used to start up the
module on the fly.

3. Remote method invocation: This enables one module
to invoke a service method in another module. As
mentioned above, SBW provides both a basic low-level
API, and a higher-level API that allows invoking meth-
ods in a way that is “natural” for the particular pro-
gramming language being used.

4. Data serialization: All method invocations involve pass-
ing messages between modules, which requires packing
data into message streams. (In Java, it is possible to
abstract these details completely and introduce proxy
objects that completely encapsulate operations on re-
mote modules. Unfortunately, this is not possible in
all languages; in those cases, some aspects of data se-
rialization must be exposed to the application.)

5. Exception handling : These are facilities for dealing
with exceptional conditions signaled by modules.

6. Event notification: Certain activities in SBW, such as
the addition or shutdown of an instance of a module,
generate events that are used to notify all other mod-
ules of the changes.

As an example of how simple the API is to use in prac-
tice, the following Java code demonstrates how one might
invoke a simulation module that implements a handful of
methods. The methods are part of a service named “simu-
lation” provided by the module, and the module is named
“edu.caltech.simulator” in this example.
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Figure 4: Illustration of the components of the SBW client library.

// Define the service interface for the Java compiler.
interface Simulator
{

void loadSBML(string);
void setTimeStart(double);
void setTimeEnd(double);
void setNumPoints(integer);
double[] simulate();
}

public double[] runSimulation(String modelDefinition,
double startTime,
double endTime,
integer numPoints)

{
try
{

// Start a new instance of the simulator module.
Module module

= SBW.getModuleInstance("edu.caltech.simulator");

// Locate the service we want to call in the module.
Service srv = module.findServiceByName("simulation");
Simulator simulator

= (Simulator) srv.getServiceObject(Simulator.class);

// Send the model to the simulator and set parameters.
simulator.loadSBML(modelDefinition);
simulator.setTimeStart(startTime);
simulator.setTimeEnd(endTime);
simulator.setNumPoints(numPoints);

// Run the simulation and return the result.
return simulator.simulate()

} catch (SBWException e) {
// Handle problems here.
}
}

4. SUMMARY
Our goal in developing the ERATO Systems Biology Work-
bench has been to create a simple, open-source integra-
tion environment that will allow developers to easily provide
the ability for their applications to communicate with other
tools. SBW uses a straightforward broker-based architec-
ture that allows applications (potentially running on sepa-
rate, distributed computers) to communicate via a simple
network protocol. The interfaces to the system are encapsu-

lated in client-side libraries that we provide for different pro-
gramming languages (currently C, C++, Java, Delphi and
Python, with more anticipated in the future). By provid-
ing a common, free framework for linking different packages
together, we hope to enable a new synergy of functionality
that will allow greater exchange of models and results in all
areas of computational biology.

A number of SBW-enabled modules are already available.
These include: (1) a visual biochemical network designer [31];
(2) an ODE-based network simulator [30]; (3) a simple SBW
status monitor that sits in the Microsoft Windows tray and
can be used to check on running modules; (4) a plotting
module; (5) an SBML [22] reader, validator and model query
module; (6) a stochastic simulation module based on the
work of Gibson [16]; and (7) an optimizer based on the core
Gepasi [25] algorithms. More modules are under develop-
ment by our group and others.
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APPENDIX
A. MESSAGE-PASSING IN SBW: EXPERI-

MENTS WITH ALTERNATIVES
In this section, we support our decision to develop a novel
messaging scheme in SBW by presenting a detailed com-
parison between SBW’s messaging framework and XML-
RPC [41] (a simpler variant of SOAP [7], a popular Internet
protocol). We chose XML-RPC as a test case for several
reasons: it is a simple and easily-understood protocol, im-
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plementations are freely available for a large number of pro-
gramming languages, and it is similar to SOAP, yet simpler
and smaller, which means that the results of performance
tests using XML-RPC reflect the best results that one could
expect from using SOAP.

A.1 Summaries of the Two Systems
A.1.1 SBW-RPC
The message-passing system implemented in SBW (which
we call SBW-RPC ) is a relatively simple scheme that en-
codes data values as bytes and sends them in a stream across
a socket connection. Each data item is preceded with a tag
that identifies its type. The messaging system supports the
following common and useful data types:

Byte An 8-bit quantity, equivalent to a Java byte

Boolean 0 (false) or 1 (true)
Integer 32-bit signed number, equivalent to Java’s int

Double 64-bit floating-point number (IEEE 754 format)
String Sequence of characters equivalent to char * in C
Array Multidimensional homogeneous block of data
List Heterogeneous sequence of data elements

The operations in the basic API center around blocking and
non-blocking remote procedure calls. The blocking version
(call) invokes a specific method in a specific module, hand-
ing it arguments serialized into a message data stream. The
call waits until the method on the remote module returns
a value. The non-blocking version (send) is similar, except
that it does not wait for a return value. SBW-RPC also
provides a means for returning exception codes to a caller.

We were reluctant to invent a custom message encoding for-
mat, given that a number of alternatives already exist. We
examined numerous well-known candidates, including Sun
RPC XDR [34], DCE NDR [27], and the Java Object Seri-
alization Specification [35]. However, from the standpoint
of our requirements, each of these alternatives suffered from
deficiencies. For example, both XDR and NDR are untagged
formats, which means that two parties communicating data
must know ahead of time the exact structure being sent, and
Java serialization has substantial (and for our purposes, un-
necessary) baggage for dealing with object classes.

A.1.2 XML-RPC
XML-RPC [41] is a remote procedure calling protocol that
uses HTTP as the transport and XML as the message en-
coding. The messages are in plain text, and consist of tagged
fields for the name of the remote procedure being called and
the arguments supplied. The textual nature of the messages
makes debugging simpler. XML-RPC supports a number of
data types:

Boolean 0 (false) or 1 (true)
Integer 32-bit signed number, equivalent to Java’s int

Double 64-bit floating-point number
String Sequence of ASCII characters
DateTime Date/time in ISO 8601 format
Base64 Base64-encoded [6] binary data
Array A heterogeneous sequence of elements
Struct A heterogeneous sequence of elements, each of

which contains named item-value pairs

Arrays in XML-RPC differ from those in SBW-RPC in that
they can be heterogeneous. Each element in an array is
prefixed with a type specifier. It is also worth noting that
in XML-RPC, the format of floating point numbers is not
specified as being, e.g., IEEE 754 format, and the numbers
themselves are communicated as strings. (The size specifi-
cation (64-bit) refers to the space that should be allocated
to the data type in a program, not to the size of the data
object as encoded in XML.) Finally, there is no representa-
tion for infinity, negative infinity, or “not a number”. The
range of allowable values is implementation-dependent and
not specified.

An XML-RPC transaction is synchronous and uses HTTP
as the protocol. The call returns a response message to the
caller; this message may be a fault/exception.

A.2 Performance Comparison of SBW-RPC
versus XML-RPC

Data exchange rates can be an important issue for biological
simulation and analysis. If the time required to transmit
data between software tools is too high, a framework such
as SBW will be rejected by software tool developers as being
too inefficient. We therefore placed high value on providing
a fast communications mechanism in SBW.

A.2.1 Experimental Methods
We tested Java implementations of both the XML-RPC and
SBW-RPC systems. The performance tests consisted of tim-
ing how long it took each messaging implementation to ex-
change a certain number of messages. The tests of the XML-
RPC and SBW-RPC versions both used the same test-bed
driver; the code is available online [21]. We tested round
trip times between two modules connected through the bro-
ker using five different scenarios: (1) 10 000 empty message;
(2) 1000 short arrays of 10 doubles each; (3) 100 long arrays
of 1000 doubles each; (4) 1000 short strings of 100 characters
each; and (5) 100 long strings of 10 000 characters each.

The communications tests involved only the local machine,
which means that network latencies can be assumed to be
zero, and the results can be assumed to measure the per-
formance of the message-handling code only. We also at-
tempted to eliminate some other possible confounding vari-
ables:

• We performed timing tests under both Linux (Red Hat
Linux 7.0, kernel 2.4.0) and Windows (Windows 2000)
systems, using identical hardware in both cases (733
Mhz Pentium-III based computer with 384 MB RAM).
The test results were comparable and did not reveal a
platform-specific advantage of using one OS over the
other. Here we present only the results from the Linux-
based tests.

• We tested different versions of the Java Development
Kit (JDK), specifically Sun’s version JDK 1.3 (Java
HotSpot Client VM, build 1.3.0rc1-b17, “mixed mode”)
and IBM’s version 1.3 JDK (build 1.3.0, J2RE 1.3.0
IBM build cx130-20010207, JIT enabled), both un-
der the Linux system. We did not find an advan-
tage to using one or the other JVM for either of the
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message-passing schemes. (The absolute performances
differed when using different JVMs, but the relative
performance difference between XML-RPC and SBW-
RPC stayed the same.) The results presented in Sec-
tion A.2.2 were generated using the Sun implementa-
tion.

For the XML-RPC portion of these tests, we started with
an off-the-shelf solution available on the Internet (version 1.0
beta 4 of the Helma XML-RPC implementation [39]). We
tested several XML parser implementations (Ælfred version
1.1 [26], Crimson version 1.1 [2], MinML version 1.0 [40],
OpenXML version 1.2 [28], XP version 0.5 [12], and Xerces
version 1.3.1 [3]), and found that MinML [40] gave the high-
est performance on the test suite used here.

Initial tests showed that long arrays of double’s took inor-
dinately long to transfer, so we performed one optimization:
we changed the XML-RPC implementation to encode arrays
of double’s as base64-encoded character arrays. (Strictly
speaking, this is not in the spirit of XML-RPC, but it is
also not directly forbidden.) The test results here are based
on this modified implementation.

A.2.2 Results of Timing Experiment
The timing results are presented in Table 1. The table shows
that in terms of absolute performance, XML-RPC message
exchanges for short messages took 1.3–1.6 ms mean time,
whereas the SBW-RPC solution took 0.19–0.28 ms mean
time. This represents a factor of 5 to 8 in difference. We
expect short messages to be the most relevant case for most
applications. The time difference is similar for the case of
empty messages; there again, the XML-RPC approach took
approximately ten times as long to exchange messages as
the SBW-RPC method. For long messages, exchange times
were similar for both methods.

Mean Run Times (ms)
Test XML-RPC SBW-RPC

short array of double’s 1.6 0.19
short character string 1.3 0.28
long array of double’s 11.3 8.6
long character string 8.9 8.2

empty message 1.2 0.10

Table 1: Mean run times for each case of the timing
experiments.

A.3 Analysis and Discussion
The results in the previous section imply that message ex-
changes using the XML-RPC approach can take up to ten
times as long as in SBW-RPC. The results indicate that
SBW-RPC is a higher-performance scheme than XML-RPC.

It is important to consider these timing results in the con-
text of expected run times in an application. One situation
that will demand high performance is optimization involving
separate packages, in which the objective function requires
running a simulation (e.g., using an ODE-based simulator
such as Jarnac [30]) under the control of the optimizer (e.g.,

Gepasi [25]). This is admittedly not an ideal configura-
tion; implementing the objective function inside the opti-
mizer module would be more efficient, but sometimes this
is not feasible. This scenario will require repeated message
exchanges back and forth between separate modules. We
attempted to estimate how long a typical simulation might
take by examining a few example Jarnac simulations and
then making some rough estimates for other cases. The re-
sults are shown in Table 2.

Case Execution times

Run to steady-state
Small model 1.5–5 ms
Large model (estimated) 15–50 ms

Time-course simulation
Small model 10–30 ms
Large model (estimated) 40–70 ms

Table 2: Approximate and estimated run times for
simulations using Jarnac, based on a small sam-
ple problem involving a two-parameter model with
three species and non-trivial kinetics. The estimates
for a “big model” are educated guesses made by
Jarnac’s author.

The estimates in Table 2 show that the run time for reach-
ing steady-state in a model (the most likely situation used
in an optimization problem) is 1.5 ms at minimum. Let us
assume that actual ranges will be closer to the mean value of
the extremes: so, instead of 1.5–5 ms for a small model and
15–50 ms for a large model, we take (1.5 + 50)/2 ≈ 30 ms
(rounded down) as the average time to compute a result for
a realistic model in a system such as Jarnac. If message
round-trip times are on the order of 1 ms, as in the XML-
RPC tests for short messages, it implies that the total time
spent on each computational cycle will be 30+1 = 31 ms. A
message time of 1 ms is equal to 1/31 of this total, or 3.2%.
On the other hand, the SBW-RPC case takes approximately
0.1 ms, which implies that the total time spent on each com-
putational cycle will be 30 + 0.1 = 30.1 ms. A message time
of 0.1 ms, then, is equal to 0.1/30.1 of this total, or 0.33%.
Note, however, that although the difference in percentages
of time spent in communications appears large (3.2% ver-
sus 0.33%), the difference in absolute times (31 ms versus
30.1 ms) is small: it is 2.9%. We conclude from these results
that, although data transfers in XML-RPC are slower than
in SBW-RPC, the impact on real applications would not be
significant enough to justify making a choice solely on this
basis.

A.3.1 Other Factors
A few other factors could, however, affect the choice of one
messaging framework versus the other. One is that XML-
RPC uses standards such as HTTP and XML, and therefore
has a certain attractiveness that a novel, homegrown ap-
proach such as SBW-RPC lacks. However, it is important
to note that the message format and protocol are hidden
behind programming libraries in SBW, and few developers
will care about their actual implementation.

A second selling point for XML-RPC is that, because it uses
HTTP as its transport protocol, it is in theory able to cross
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most network firewall without special requirements. Cross-
ing a firewall using the SBW-RPC method would require
the firewall to allow network traffic on a nonstandard port.
Most site administrators, especially in corporate network
environments, are reluctant to introduces special-case holes
in their network security systems.

Unfortunately, it turns out that for purposes of SBW, using
XML-RPC would not make it easier to cross network fire-
walls. SBW requires bidirectional communications between
modules. One module may call on another (via the broker
as intermediary), and two modules may exchange informa-
tion with each other. In all cases, any module can serve
as the initiator. One of our realizations during the test-
ing process was that XML-RPC does not support bidirec-
tional connections. The problem lies in the HTTP protocol,
which is oriented towards client-server applications where
an agent initiates a connection to a server listening on a
designated TCP/IP port. The implication of using XML-
RPC for SBW is that if modules A and B needed to invoke
operations on each other simultaneously, module A would
have to initiate a connection to B and B would also have to
initiate a separate connection to module A. Although this
would itself not be a problem, it has two important impli-
cations: every module would need to be assigned a unique
TCP/IP port on a given machine, so that it could listen
for requests directed at it; and the firewall transparency im-
plied by using HTTP would be lost, because modules would
have to use ports other than the standard HTTP port—
communications could not all take place through a single
connection through a firewall as in normal HTTP. It appears
the only work-around to this would be to violate the HTTP
protocol and somehow tunnel a bidirectional data stream
over a single HTTP connection. However, such an imple-
mentation would not adhere to the XML-RPC specification
and would not be compatible with existing XML-RPC im-
plementations. Thus, XML-RPC would offer no advantages
over SBW-RPC in terms of firewall transparency.

There is one factor that does have a substantial impact on
the choice of messaging framework used for SBW: support
for required data types. The data types made available in
the SBW-RPC implementation were chosen (1) to support
the types of data that we expected would be needed by sys-
tems biology simulators, and (2) to provide a reasonable
balance between flexibility and conciseness. We knew that
data types such as IEEE floating point would be important
for simulation software. It is therefore important to note
that XML-RPC does not specify the use of IEEE floating
point numbers: XML-RPC’s floating point type is double,
whatever that may be in a given programming language,
and when written out in XML, the double is expressed as
a sequence of ASCII characters (e.g., "234.255"). As a
consequence, there is no formalized way of expressing over-
flow and NaN; moreover, representing numbers in character
string form can lead to a loss of numerical precision. Thus,
using XML-RPC as the basis of the SBW communications
framework would require that we add mechanisms to sup-
port IEEE floating-point quantities (perhaps by manually
encoding numbers using byte arrays). This would likely have
no impact on performance, but it would call into question
the logic of using XML-RPC when it does not support the
basic data types needed by our application.

A.4 Conclusions
In summary, although our timing tests indicate that SBW-
RPC performs better than XML-RPC, the impact of the dif-
ference on real applications is likely to be negligible. There-
fore, a choice between the two schemes cannot be made on
this basis. Several other factors also do not present a clear
argument in favor of XML-RPC. However, the lack of sup-
port for key data types in XML-RPC does present a clear
argument in favor of SBW-RPC. For these reasons, we chose
SBW-RPC for use in SBW.
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