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6 The ERATO Systems Biology Workbench:
An Integrated Environment for Multiscale
and Multitheoretic Simulations in Systems
Biology

Michael Hucka, Andrew Finney, Herbert Sauro,
Hamid Bolouri, John Doyle, and Hiroaki Kitano

Over the years, a variety of biochemical network modeling packages have
been developed and used by researchers in biology. No single package
currently answers all the needs of the biology community; nor is one likely
to do so in the near future, because the range of tools needed is vast and
new techniques are emerging too rapidly. It seems unavoidable that, for
the foreseeable future, systems biology researchers are likely to continue
using multiple packages to carry out their work.

In this chapter, we describe the ERATO Systems Biology Workbench
(SBW) and the Systems Biology Markup Language (SBML), two related ef-
forts directed at the problems of software package interoperability. The
goal of the SBW project is to create an integrated, easy-to-use software
environment that enables sharing of models and resources between simu-
lation and analysis tools for systems biology. SBW uses a modular, plug-in
architecture that permits easy introduction of new components. SBML is
a proposed standard XML-based language for representing models com-
municated between software packages; it is used as the format of models
communicated between components in SBW.

INTRODUCTION

The goal of the ERATO Systems Biology Workbench (SBW) project is to create
an integrated, easy-to-use software environment that enables sharing of
models and resources between simulation and analysis tools for systems
biology. Our initial focus is on achieving interoperability between seven
leading simulations tools: BioSpice (Arkin, 2001), DBSolve (Goryanin, 2001;
Goryanin et al., 1999), E-Cell (Tomita et al., 1999, 2001), Gepasi (Mendes,
1997, 2001), Jarnac (Sauro, 1991; Sauro and Fell, 2000), StochSim (Bray et
al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al., 2000,
2001). Our long-term goal is to develop a flexible and adaptable environ-



ment that provides (1) the ability to interact seamlessly with a variety of
software tools that implement different approaches to modeling, param-
eter analysis, and other related tasks, and (2) the ability to interact with
biologically-oriented databases containing data, models and other rele-
vant information.

In the sections that follow, we describe the Systems Biology Work-
bench project, including our motivations and approach, and we summa-
rize our current design for the Workbench software environment. We also
discuss the Systems Biology Markup Language (SBML), a model description
language that serves as the common substrate for communications be-
tween components in the Workbench. We close by summarizing the cur-
rent status of the project and our future plans.

Motivations for the Project

The staggering volume of data now emerging from molecular biotechnol-
ogy leave little doubt that extensive computer-based modeling, simula-
tion and analysis will be critical to understanding and interpreting the
data (e.g., Abbott, 1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik,
2000). This has lead to an explosion in the development of computer tools
by research groups across the world. Example application areas include
the following:

• Filtering and preparing data (e.g., gene expression micro- and macro-
array image processing and clustering/outlier identification), as well as
performing regression and pattern-extraction;
• Database support, including remote database access and local data stor-
age and management (e.g., techniques for combining gene expression data
with analysis of gene regulatory motifs);
• Model definition using graphical model capture and/or mathematical
description languages, as well as model preprocessing and translation
(e.g., capturing and describing the three-dimensional structure of sub-
cellular structures, and their change over time);
• Model computation and analysis, including parameter optimization,
bifurcation/sensitivity analysis, diffusion/transport/buffering in com-
plex 3-D structures, mixed stochastic-deterministic systems, differential-
algebraic systems, qualitative-qualitative inference, and so on; and
• Data visualization, with support for examining multidimensional data,
large data sets, and interactive steering of ongoing simulations.

This explosive rate of progress in tool development is exciting, but the
rapid growth of the field has been accompanied by problems and pressing
needs. One problem is that simulation models and results often cannot be
compared, shared or re-used directly because the tools developed by dif-
ferent groups often are not compatible with each other. As the field of sys-
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tems biology matures, researchers increasingly need to communicate their
results as computational models rather than box-and-arrow diagrams. But
they also need to reuse each other’s published and curated models as li-
brary elements in order to succeed with large-scale efforts (e.g., the Al-
liance for Cellular Signaling, Gilman, 2000; Smaglik, 2000). These needs
require that models implemented in one software package be portable to
other software packages, to maximize public understanding and to allow
building up libraries of curated computational models.

A second problem is that software developers often end up duplicat-
ing each other’s efforts when implementing different packages. The rea-
son is that individual software tools typically are designed initially to ad-
dress a specific set of issues, reflecting the expertise and preferences of the
originating group. As a result, most packages have niche strengths which
are different from, but complementary to, the strengths of other packages.
But because the packages are separate systems, developers end up having
to re-invent and implement much general functionality needed by every
simulation/analysis tool. The result is duplication of effort in developing
software infrastructure.

No single package currently answers all the needs of the emerging
systems biology community, despite an emphasis by many developers to
make their software tools omnipotent. Nor is such a scenario likely: the
range of tools needed is vast, and new techniques requiring new tools
are emerging far more rapidly than the rate at which any single package
may be developed. For the foreseeable future, then, systems biology re-
searchers are likely to continue using multiple packages to carry out their
work. The best we can do is to develop ways to ease sharing and commu-
nication between such packages now and in the future.

These considerations lead us to believe that there is an increasingly
urgent need to develop common standards and mechanisms for sharing
resources within the field of systems biology. We hope to answer this need
through the ERATO Systems Biology Workbench project.

THE SYSTEMS BIOLOGY MARKUP LANGUAGE

The current inability to exchange models between simulation/analysis
tools has its roots in the lack of a common format for describing models.
We sought to address this problem from the very beginning of the project
by developing an open, extensible, model representation language.

The Systems Biology Workbench project was conceived at an ERATO-
sponsored workshop held at the California Institute of Technology, USA,
in December, 1999. The first meeting of all the collaborators at The First
Workshop on Software Platforms for Molecular Biology was held at the same
location in April, 2000. The participants collectively decided to begin by
developing a common, XML-based (Bosak and Bray, 1999), declarative
language for representing models. A draft version of this Systems Biology
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Markup Language (SBML) was developed by the Caltech ERATO team
and delivered to all collaborators in August, 2000. This draft version un-
derwent extensive discussion over mailing lists and then again during The
Second Workshop on Software Platforms for Molecular Biology held in Tokyo,
Japan, November 2000. A revised version of SBML was issued by the Cal-
tech ERATO team in December, 2000, and after further discussions over
mailing lists and in meetings, a final version of the base-level definition of
SBML was released publicly in March, 2001 (Hucka et al., 2001).

The Form of the Language

SBML Level 1 is the result of merging modeling-language features from
the seven tools mentioned in the introduction (BioSpice, DBSolve, E-Cell,
Gepasi, Jarnac, StochSim, and Virtual Cell). This base level definition of
the language supports non-spatial biochemical models and the kinds of
operations that are possible in these analysis/simulation tools. A num-
ber of potentially desirable features were intentionally omitted from the
base language definition. Subsequent releases of SBML (termed levels) will
add additional structures and facilities currently missing from Level 1.
By freezing sets of features in SBML definitions at incremental levels,
we hope to provide the community with stable standards to which soft-
ware authors can design to, while at the same time allowing the simula-
tion community to gain experience with the language definitions before
introducing new elements. At the time of this writing, we are actively
developing SBML Level 2, which is likely to include the ability to repre-
sent submodels, arrays and array connectivity, database references, three-
dimensional geometry definition, and other features.

X0 k1X0
−−→

S1

S1 k2S1
−−→

X1

S1 k3S1
−−→

X2

Shown at right is an example of a simple, hypothetical
biochemical network that can be represented in SBML.
Broken down into its constituents, this model contains a
number of components: reactant species, product species,
reactions, rate laws, and parameters in the rate laws. To
analyze or simulate this network, additional components
must be made explicit, including compartments for the
species and units on the various quantities. The top level of an SBML
model definition simply consists of lists of these components:

beginning of model definition
list of unit definitions (optional)
list of compartments
list of species
list of parameters (optional)
list of rules (optional)
list of reactions

end of model definition
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The meaning of each component is as follows:

Unit definition: A name for a unit used in the expression of quantities in a
model. Units may be supplied in a number of contexts in an SBML model,
and it is convenient to have a facility for both setting default units and for
allowing combinations of units to be given abbreviated names.
Compartment: A container of finite volume for substances. In SBML

Level 1, a compartment is primarily a topological structure with a volume
but no geometric qualities.
Specie: A substance or entity that takes part in a reaction. Some example

species are ions such as Ca2++ and molecules such as glucose or ATP. The
primary qualities associated with a specie in SBML Level 1 are its initial
amount and the compartment in which it is located.
Parameter: A quantity that has a symbolic name. SBML Level 1 provides

the ability to define parameters that are global to a model, as well as
parameters that are local to a single reaction.
Reaction: A statement describing some transformation, transport or bind-

ing process that can change the amount of one or more species. For ex-
ample, a reaction may describe how certain entities (reactants) are trans-
formed into certain other entities (products). Reactions have associated
rate laws describing how quickly they take place.
Rule: In SBML, a mathematical expression that is added to the differential

equations constructed from the set of reactions, and can be used to set
parameter values, establish constraints between quantities, etc.

A software package can read in a model expressed in SBML and trans-
late it into its own internal format for model analysis. For instance, a pack-
age might provide the ability to simulate a model, by constructing a set of
differential equations representing the network and then performing nu-
merical time integration on the equations to explore the model’s dynamic
behavior. The output of the simulation might consist of plots of various
quantities in the model as they change over time.

SBML allows models of arbitrary complexity to be represented. We
present a simple, illustrative example of using SBML in Appendix A, but
much more elaborate models are possible. The complete specification of
SBML Level 1 is available from the project’s World Wide Web site (http:
//www.cds.caltech.edu/erato/).

Relationships to Other Efforts

There are a number of ongoing efforts with similar goals as those of SBML.
Many of them are oriented more specifically toward describing protein
sequences, genes and related elements for database storage and search.
These are generally not intended to be computational models, in the sense
that they do not describe entities and behavioral rules in such a way that
a simulation package could “run” the models.
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The effort closest in spirit to SBML is CellML
TM

(CellML Project, 2001).
CellML is an XML-based markup language designed for storing and ex-
changing computer-based biological models. It includes facilities for rep-
resenting model structure, mathematics and additional information for
database storage and search. Models are described in terms of networks
of connections between discrete components; a component is a functional
unit that may correspond to a physical compartment or simply a con-
venient modeling abstraction. Components contain variables and con-
nections contain mappings between the variables of connected compo-
nents. CellML provides facilities for grouping components and specify-
ing the kinds of relationships that may exist between components. It uses
MathML (Ausbrooks et al., 2001) for expressing mathematical relation-
ships and provides the ability to use ECMAScript (formerly known as
JavaScript; ECMA, 1999) to define functions.

The constructs in CellML tend to be at a more abstract and general
level than those in SBML Level 1, and it provides somewhat more general
capabilities. By contrast, SBML is closer to the internal object model used
in model analysis software. Because SBML Level 1 is being developed in
the context of interacting with a number of existing simulation packages,
it is a more concrete language than CellML and may be better suited to its
purpose of enabling interoperability with existing simulation tools. How-
ever, CellML offers viable alternative ideas and the developers of SBML
and CellML are actively engaged in ensuring that the two representations
can be translated between each other.

THE SYSTEMS BIOLOGY WORKBENCH

In this section, we describe how we approached the development of the
Systems Biology Workbench from both philosophical and technical stand-
points; we also summarize the overall architecture of the system and ex-
plain how it enables integration and sharing of software resources.

Driving Principles

The Systems Biology Workbench is primarily a system for integrating re-
sources. It provides infrastructure that can be used to interface to software
components and enable them to communicate with each other. The com-
ponents in this case may be simulation codes, analysis tools, user inter-
faces, database interfaces, script language interpreters, or in fact any piece
of software that conforms to a certain well-defined interface.

We knew from the outset that the success of the Workbench would be
contingent on contributors benefitting from sharing resources through the
system. For this reason, we made three commitments toward this goal:
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• The Systems Biology Workbench software will be made publicly and
freely available under open-source licensing (O’Reilly, 1999; Raymond,
1999). The agency funding the development of the Workbench (the Japan
Science and Technology Corporation) has formally agreed that all SBW
code can be placed under open-source terms. At the same time, the li-
cense terms will not force contributors to apply the same copying and dis-
tribution terms to their contributed software—developers will be free to
make their components available under license terms that best suit them.
They may choose to make a component available under the same open-
source license, in which case it may be packaged together with the Sys-
tems Biology Workbench software distribution; however, there is nothing
preventing an author from creating an SBW-compatible component that is
closed-source and distributed privately.
• The Workbench architecture is designed to be symmetric with respect to
facilities made available to components. All resources available through
the Workbench system are equally available to all components, and no
single component has a controlling share. All contributors thereby benefit
equally by developing software for the Workbench.
• The direct interface between a software component and the Systems Bi-
ology Workbench is a specific application programming interface (API).
The component’s authors may chose to implement this API directly and
publish the details of the operations provided by the component. Alterna-
tively, they may enter into a formal agreement with us (the authors of the
Workbench) in which they reveal only to us their component’s API, and
we will write an interface between the Workbench and this API. The latter
alternative allows contributors to retain maximum confidentiality regard-
ing their component, yet still make the component available (in binary
executable form) for users of the Workbench.

The Overall Architecture of the Workbench

Although our initial focus is on enabling interaction between the seven
simulation/analysis packages already mentioned, we are equally inter-
ested in creating a flexible architecture that can support future develop-
ments and new tools. We have approached this by using a combination
of three key features: (1) a framework divided into layers, (2) a highly
modular, extensible structure, and (3) inter-component communications
facilities based on message-passing.

Layered Framework

We sought to maximize the reusability of the software that we developed
for the Workbench by dividing the Workbench infrastructure into two
layers: the Systems Biology Workbench itself, and a lower-level substrate
called the Biological Modeling Framework (BMF). The latter is a general
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software framework that can be used in developing a variety of biological
modeling and analysis software applications. It not directly tied to the
current architecture of SBW, allowing us the freedom to evolve and change
SBW in the future while still maintaining a relatively stable foundation.

BMF provides basic scaffolding supporting a modular, extensible ap-
plication architecture (see below), as well as a set of useful software com-
ponents that can be used as black boxes in constructing a system (cf. Fayad
et al., 1999). Other projects should be able to start with BMF, add their
own domain- and task-specific elements, and thereby implement a sys-
tem specialized for other purposes. This is how the neuroscience-oriented
Modeler’s Workspace (Hucka et al, 2000) is being implemented. Compu-
tational biologists and other users do not need to be aware of the existence
of BMF—it is scaffolding used by the developers of SBW and other tools,
and not a user-level construct.

SBW is a particular collection of application-specific components lay-
ered on top of BMF. These collectively implement what users experience
as the “Systems Biology Workbench”. Some components add functionality
supporting the overall operation of the Workbench, such as the message-
passing communications facility; other components implement the inter-
faces to the specific simulation/analysis tools made available in the Work-
bench. Figure 6.1 illustrates the overall organization of the layers.
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Figure 6.1 The Systems Biology Workbench (SBW) is a collection of software
components layered on top of a simple plug-in architecture called the Biological
Modeling Framework (BMF).
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Highly Modular, Extensible Architecture

The Biological Modeling Framework layer that underlies SBW is imple-
mented in Java and provides (1) support for managing pluggable com-
ponents (“plug-ins”) and (2) a collection of basic components (such as an
XML Schema-aware parser, file utilities, basic plotting and graphing utili-
ties, etc.) that are useful when implementing the typical kinds of applica-
tions for which BMF is intended.

The kinds of application-specific plug-ins that comprise SBW can gen-
erally be grouped by their purposes: user interfaces, simulator/analyzer
interfaces, scripting language interfaces, and database interfaces. Other
kinds are possible, but these are the primary application-specific plug-
in types that we foresee being developed. There can be any number of
plug-ins in a given system, subject to the usual limitations on computer
resources such as memory. Each plug-in needs to conform to certain min-
imal interface requirements dictated by the framework, discussed further
below. A plug-in can make use of any public services provided by BMF,
the core plug-ins, and application-specific plug-ins.

By virtue of the software environment provided by the Java 2 Plat-
form (Flanagan, 1999; Gosling et al., 1996), plug-ins can be loaded dynam-
ically, without recompiling or even necessarily restarting a running appli-
cation. This can be used to great advantage for a flexible and powerful
environment. For example, an application could be designed to be smart
about how it handles data types, loading specialized plug-ins to allow a
user to interact with particular data objects on an as-needed basis. If the
user does not already have a copy of a certain plug-in stored on the local
disk, the plug-in could be obtained over the Internet, much like current-
generation Web browsers can load plug-ins on demand. In this manner,
plug-ins for tasks such as displaying specific data types or accessing third-
party remote databases could be easily distributed to users.

Message-Passing for Inter-Component Communications

One of the challenges in developing a modular system, especially one that
allows incremental addition and change by different developers, is de-
signing appropriate interfaces between components. Knowledge of an el-
ement’s interface necessarily becomes encoded in its structure; otherwise,
component A would not know how to communicate with component B.
Many frameworks are designed around a hierarchy of object classes and
interfaces; this lets them provide a rich selection of features. However, for
this project, class hierarchies have two important disadvantages:

• Methods and calling conventions for accessing different objects become
scattered throughout the structure of each component in the system. The
effects of changing an interface are not localized in client code: changing
the interface of a fundamental object may require rewriting code in many
different locations in every other component that uses it.
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• The task of creating interfaces to components written in other program-
ming languages is more complex. If the component is a library, the foreign-
function bridge (whether it is implemented using the Java Native Interface
[JNI] or other) must expose all of the methods provided by the compo-
nent’s interface, which requires substantial programming effort and sig-
nificant maintenance. Similarly, if the component is a stand-alone appli-
cation, the mechanism used to communicate with it must provide access
to all or most of the classes and methods provided by the component’s
interface. CORBA (Object Management Group, 2001; Seetharman, 1998;
Vinoski, 1997) is one technology that could be used to cope with these is-
sues, but we decided to avoid requiring its use in SBW because we feared
its complexity would be too daunting to potential contributors.

We began developing SBW using the common approach of design-
ing object class hierarchies representing different functions and simu-
lation/analysis capabilities, but soon decided that the problems above
would become too onerous. We chose instead to base inter-component
communications on passing messages via byte streams.

In this approach, each component or component wrapper needs to
expose a simple programmatic interface, consisting of only a handful of
methods. The main method in this interface (PluginReceive) is the entry
point for exchanging messages. Other methods in the interface provide
a way for starting the execution of the component (PluginStart), and for
obtaining its name and a list of strings describing the kinds of capabilities
it implements (PluginRegistrationInformation). The latter can be used
by other components to discover programmatically what services a new
component provides.

A message in this framework is a stream of bytes that encodes a service
identifier and a list of arguments. The service identifier is determined
from the list of services advertised by the component. The arguments are
determined by the particular service. For example, a command to perform
steady-state analysis on a biochemical network model would require a
message that encodes the model and a list of parameters on the kind of
analysis desired. The result passed back by the component would be in
the form of another message.

The representation of the data in a message is encoded according
to a specific scheme. The scheme in SBW allows for the most common
data types to be packaged into a message. Each element in a message
is preceded by a byte that identifies its data type. The types currently
supported include character strings, integers, double-sized floating-point
numbers, arrays of homogeneous elements, and lists of heterogeneous
elements.

How does this approach help cope with the two problems listed
above? At first glance, it may seem that this approach merely hides func-
tionality behind a simple façade. After all, changing the operation of a
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component still requires other components to be changed as well, for ex-
ample to compose and parse messages differently as needed. However,
in this approach, the effects of actual interface changes are more localized,
typically affecting fewer objects in other components.

The message-passing approach also simplifies the task of interfacing
to components implemented in different programming languages. Rather
than have to provide native-code interfaces (say, using Java JNI) to ev-
ery method in a large class hierarchy, only a few methods must be im-
plemented. Likewise, it is much simpler to link components that run as
separate processes or on remote computers. A simple message-passing
stream is easily implemented through a TCP/IP socket interface, the sim-
plest and most familiar networking facility available nearly universally on
almost every computer platform.

The current message-passing scheme can be used to exchange mes-
sages encoded in XML, which makes this approach similar to XML-
RPC (Winer, 1999) and SOAP (Box et al., 2000). However, our message
protocol allows other data types to be encoded as well. Using XML ex-
clusively would require binary data to be encoded into, and unencoded
from, a textual representation, which would impact performance and po-
tentially affect floating-point accuracy. We therefore designed the protocol
to allow binary data as well as XML to be exchanged.

Advantages of an Extensible Framework Approach

The modular framework approach is pervasive throughout the design of
the system. Both the underlying BMF layer and an application layer such
as SBW are implemented as plug-ins attached to a small core. Nearly all of
the functionality of both layers are determined by the plug-ins themselves.

The primary benefits of using a modular framework approach accrue
to software developers. For a developer who would like to build upon
BMF and create a new system, or take an existing system such as SBW and
create enhancements or specialized components, the following are some
of the benefits (Fayad et al., 1999):

• Modularity. A framework is composed of modules, each of which en-
capsulates implementation details behind a stable interface. Design and
implementation changes to individual modules are less likely to have an
impact on other modules or the overall system.
• Reusability. A framework offers a set of elements that represent common
solutions to recurring problems. Reusing the elements saves design and
development time.
• Extensibility. Extensibility is designed into a framework by providing
well-defined ways to add new modules and extend existing modules. In
its most essential form, a framework is a substrate for bringing software
modules together.
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Although frameworks were invented by software developers to sim-
plify the implementation of complex software, users also benefit when a
system is based on a framework approach. For a biologist or other user
who would like to employ a tool built on top of BMF and SBW, there are
two primary gains:

• Control. Users are given greater control over the composition of a
framework-based system than a system based on a more traditional ar-
chitecture. They can use just those modules that they need, and they have
the freedom to chose different implementations of the same functionality,
or even develop their own implementations, all without altering the rest
of the system.
• Reusability. A successful framework may be reused to implement other
domain-specific tools, reducing the burden on a user by allowing them to
carry over their experiences involving the common parts.

Motivations for Using Java

We chose Java as the implementation language for the underlying BMF
layer of SBW because it offers a number of attractive features and meets
several objectives. In particular, Java arguably provides one of the most
portable cross-platform environments currently available. Java also pro-
vides a built-in mechanism for dynamic loading of code, simplifying the
implementation of an architecture oriented around plug-ins. Finally, Java
provides a rich platform for development, with such things as remote in-
vocation facilities and GUI widgets, on all supported platforms.

It is worth noting that plug-ins for the system are not required to be
written in Java. Java provides mechanisms for interfacing to software writ-
ten in other languages, through the Java Native Interface. Thus, although
Java is used to implement the core of the system, plug-ins can be written
in other languages and incorporated into an application built on top of the
framework.

Although Java has received negative publicity in the past with respect
to performance (Tyma, 1998), we do not feel that choosing Java will have a
significant impact on run-time performance. The reason is that the core of
the Systems Biology Workbench is a thin layer and most of the execution
time in an application is spent within application-specific plug-ins. Those
can be written in other languages if performance becomes an issue.

SUMMARY AND STATUS

The aim of the Systems Biology Workbench project is to create a modular,
open software environment that enables different simulation and analysis
tools to be used together for systems biology research. As part of this
effort, we have also developed a model description language, the Systems
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Biology Markup Language, that can be used to represent models in a form
independent of any specific simulation/analysis tool. SBML is based on
XML for maximal flexibility, interchangeability, and future compatibility.

Availability

We will make the software available under open-source terms from the
Caltech ERATO team’s web site, http://www.cds.caltech.edu/erato/. At
the time of this writing, we are in the process of developing and imple-
menting the core functionality of the Systems Biology Workbench, along
with an initial set of plug-ins. The aim of this effort is to demonstrate the
concepts described above and provide a medium through which we will
develop and refine the APIs. We expect to make this initial implementa-
tion available in the first half of 2001, and to release the first full version of
the Workbench by the end of 2001.

Future Plans

The final specification for SBML Level 1 was released in March, 2001. The
relevant documents are available from the Caltech ERATO team’s web
site, mentioned above. SBML Level 2 is currently under development, and
we anticipate making a preliminary specification available later in the year
2001. We will publish the specification documents on the web site as they
become available.
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APPENDIX

A EXAMPLE OF A MODEL ENCODED IN XML USING SBML

Consider the following hypothetical branched system:

X0 k1X0
−−→

S1

S1 k2S1
−−→

X1

S1 k3S1
−−→

X2

The following is the main portion of an XML document that encodes the
model shown above:

<sbml level="1" version="1">
<model name="Branched">

<notes>
<body xmlns="http://www.w3.org/1999/xhtml">

<p>Simple branched system.</p>
<p>reaction-1: X0 -> S1; k1*X0;</p>
<p>reaction-2: S1 -> X1; k2*S1;</p>
<p>reaction-3: S1 -> X2; k3*S1;</p>

</body>
</notes>
<listOfCompartments>

<compartment name="A" volume="1"/>
</listOfCompartments>
<listOfSpecies>

<specie name="S1" initialAmount="0" compartment="A"
boundaryCondition="false"/>

<specie name="X0" initialAmount="0" compartment="A"
boundaryCondition="true"/>

<specie name="X1" initialAmount="0" compartment="A"
boundaryCondition="true"/>

<specie name="X2" initialAmount="0" compartment="A"
boundaryCondition="true"/>

</listOfSpecies>
<listOfReactions>

<reaction name="reaction_1" reversible="false">
<listOfReactants>

<specieReference specie="X0"
stoichiometry="1"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="S1"
stoichiometry="1"/>

</listOfProducts>
<kineticLaw formula="k1 * X0">

<listOfParameters>
<parameter name="k1" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction name="reaction_2" reversible="false">

<listOfReactants>
<specieReference specie="S1"

stoichiometry="1"/>
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</listOfReactants>
<listOfProducts>

<specieReference specie="X1"
stoichiometry="1"/>

</listOfProducts>
<kineticLaw formula="k2 * S1">

<listOfParameters>
<parameter name="k2" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction name="reaction_3" reversible="false">

<listOfReactants>
<specieReference specie="S1"

stoichiometry="1"/>
</listOfReactants>
<listOfProducts>

<specieReference specie="X2"
stoichiometry="1"/>

</listOfProducts>
<kineticLaw formula="k3 * S1">

<listOfParameters>
<parameter name="k3" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
</listOfReactions>

</model>
</sbml>

The XML encoding shown above is quite straightforward. The outer-
most container is a tag, smbl, that identifies the contents as being systems
biology markup language. The attributes level and version indicate that
the content is formatted according to version 1 of the Level 1 definition
of SBML. The version attribute is present in case SBML Level 1 must be
revised in the future to correct errors.

The next-inner container is a single model element that serves as the
highest-level object in the model. The model has a name, “Branched”. The
model contains one compartment, four species, and three reactions. The
elements in the listOfReactants and listOfProducts in each reaction refer
to the names of elements listed in the listOfSpecies. The correspondences
between the various elements should be fairly obvious.

The model includes a notes annotation that summarizes the model in
text form, with formatting based on XHTML. This might be useful for a
software package that is able to read such annotations and render them in
HTML.
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