
Systems Biology Workbench
Perl Programmer’s Manual

Andrew Finney, Michael Hucka, Herbert Sauro, Hamid Bolouri

{mhucka,afinney,hsauro,hbolouri}@cds.caltech.edu
Systems Biology Workbench Development Group

ERATO Kitano Systems Biology Project
Control and Dynamical Systems, MC 107-81

California Institute of Technology, Pasadena, CA 91125, USA

http://www.cds.caltech.edu/erato

Principal Investigators: John Doyle and Hiroaki Kitano

July 3, 2002

http://www.cds.caltech.edu/erato

Contents
1 Introduction 3
2 A Brief Tour of SBW 3

2.1 Overview of SBW from a Programmer’s Perspective 4
3 A Tutorial on Programming with SBW in Perl 5

3.1 Method Signatures . 5
3.2 Data Types . 6
3.3 Calling a Known Module . 8
3.4 Calling a Known Service Having a Complex Return Value 8

4 SBW Perl API Reference 10
4.1 General Concepts in the SBW API . 10
4.2 Module: SBW . 14
4.3 Module: SBW::Module . 17
4.4 Module: SBW::ModuleDescriptor . 18
4.5 Module: SBW::SBWException . 19
4.6 Module: SBW::Service . 21
4.7 Module: SBW::ServiceDescriptor . 23
4.8 Module: SBW::ServiceMethod . 24
4.9 Module: SBW::Signature . 25
4.10 Module: SBW::SignatureElement . 26
4.11 Module: SBW::SignatureType . 27

A Setting Up SSH for Distributed SBW Operation 28
References 30

2

1 Introduction

The goals of this manual are to explain how to write Perl scripts for interacting with the Systems
Biology Workbench (SBW), and to provide a reference for the SBW Perl APIs. This manual
complements the overviews of the SBW system provided by Hucka et al. (2001a,c, 2002) and
the description by Sauro et al. (2001) of a prototype SBW implementation.

SBW provides a software integration environment that enables applications (potentially running
on separate machines) to learn about and communicate with each other. Applications can be
written to be providers of software services, or consumers, or both. The SBW communications
facilities allow heterogeneous packages to be connected together using a remote procedure
call mechanism; this mechanism uses a simple message-passing network protocol and allows
either synchronous or asynchronous invocations. The interfaces to SBW are encapsulated in
client libraries for different programming languages (currently C, C++, Delphi, Java, Perl,
and Python, with more anticipated), but the protocol is open and small, and developers may
implement their own interfaces to the system if they choose. The project is entirely open-source
and all specifications and implementations are freely and publicly available.

Frameworks for integrating disparate software packages are certainly not new. Compared to
other broker-based integration frameworks, SBW has the following combination of features:

• Free, open-source implementations available for all platforms;

• Availability today for Linux and Windows, with more platforms anticipated in the future;

• Comparatively simple APIs and data exchange protocol;

• Support for major programming and scripting languages and the seamless interaction
between modules written in different languages;

• No need for a separately-compiled interface definition language (IDL); and

• Resource management performed by underlying services (which means, for example, that
there is no exposed object reference counting).

SBW is being developed as part of existing collaborations in the systems biology community
with the following software development groups: BioSpice (Arkin, 2001), DBsolve (Goryanin,
2001; Goryanin et al., 1999), E-CELL (Tomita et al., 1999, 2001), Gepasi (Mendes, 1997,
2001), Jarnac (Sauro and Fell, 1991; Sauro, 2000), ProMoT/DIVA (Ginkel et al., 2000),
StochSim (Bray et al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al.,
2000, 2001). These collaborations have already successfully established SBML, the Systems
Biology Markup Language (SBML; Hucka et al., 2001b), as an important emerging standard
in systems biology.

2 A Brief Tour of SBW

The primary goal of SBW is to allow the integration of software components performing a
wide range of tasks common in computational biology, such as simulation, data visualization,
optimization, and bifurcation analysis. SBW is not designed to be in the foreground of either the
user’s or the programmer’s experience, but instead, to allow existing systems biology software
packages to easily and transparently access functionality from each other.

In more specific terms, SBW is a computational resource brokerage system. It allows the
interactive discovery and use of software resources. In the SBW scheme of things, software
resources are independent applications and are called modules. A module instance is a running
application or process. A module can implement one or more services. Services are interfaces
to the resources inside a module and consist of one or more methods (i.e., callable functions).

3

Figure 1: The overall organization of the Systems
Biology Workbench. Gray areas indicate SBW
components (libraries and the broker). To individ-
ual modules, communications appear to be direct
(dotted line), although they actually pass through
the broker.

Broker architectures are relatively common and
are considered to be a well-documented software
pattern (Buschmann et al., 1996). In SBW, the
remote service invocations are implemented us-
ing message passing, another well-known and
proven software technology. Communications
in message-passing systems take place as ex-
changes of structured data bundles—messages—
sent from one software entity to another over
a channel. Some messages may be requests to
perform an action, other messages may be no-
tifications or status reports. Because interac-
tions in a message-passing framework are de-
fined at the level of messages and protocols for
their exchange, it is easier to make the frame-
work neutral with respect to implementation
languages: modules can be written in any lan-
guage, as long as they can send, receive and
process appropriately-structured messages using
agreed-upon conventions. Figure 1 illustrates the overall SBW system organization.

From the application programmer’s point of view, it is preferable to isolate the message-passing
details from the application details. We provide two levels of programming interfaces in SBW:
a low-level API consisting of the basic operations involved in sending and receiving messages,
and a high-level API that hides the messaging level and provides ways for a module’s services
to be “hooked into” the messaging framework in an object-oriented fashion.

2.1 Overview of SBW from a Programmer’s Perspective

The SBW APIs provide the following facilities:

1. Dynamic service and module discovery : The SBW Broker keeps track of modules, services
and service categories, and provides facilities for dynamically querying SBW about them.

2. Remote method invocation: The bread and butter of SBW is enabling one module to
invoke a service method in another module. If necessary, SBW will automatically start
an instance of a module whose services are requested.

3. Data serialization: Method invocations involve sending messages between modules, with
arguments and data packed into message streams. For some languages such as Java, Perl
and Python, the SBW library provides proxy objects that hide the message-passing, so
that to client programs, remote services appear as local objects whose methods can be
invoked like any other object method.

4. Exception handling : SBW provides facilities for dealing with exceptional conditions.

5. Event notification: Certain events in SBW, such as the startup or shutdown of an instance
of a module, are announced to all modules upon their occurrence. The current version of
the SBW Perl module does not provide these facilities.

6. Module, service and method registration: In order for a module to advertise its services
to others, it must first inform the Broker about them. The registration facilities allow a
module to record with the Broker the services that the module provides, the command
that should be used to start up the module on the fly, and other information. The SBW
Broker stores this in a disk file, so that the information provided by modules is persistent
between start-up and shutdown of the modules and the Broker. The current version of
the SBW Perl module does not provide these facilities.

4

2.1.1 Service Categories

Each service is described by a unique name, a humanly-readable name, and a service category.
Services in SBW are categorized hierarchically as a tree in which the leaves are services. Each
level in the hierarchy is named and can be uniquely described via a text string very much like
directory pathnames in Unix or Windows.

The purpose of this is to support a hierarchy of programming interfaces. Each level has an
associated, documented interface. Descendants inherit or extend the interface of their parents.
Categorizing services in this way allows other applications to find services with a known interface
without having to know about specific modules. New modules, by complying with a given
interface, can extend the behavior of existing applications without requiring those applications
to be rewritten.

To give an example, one could define a top-level category, “Analysis”, with a service interface
consisting of one method:

void doAnalysis(string SBML)

Then one could have a subcategory of “Analysis” called “Analysis/Simulation”, with a service
interface consisting of two methods:

void doAnalysis(String SBML)
void ReRun()

Service category names can consist of any sequence of non-control characters excluding \n, \
and / but including space. Service category strings as used in the API are sequences of one or
more service category level names separated by either \ or / characters.

3 A Tutorial on Programming with SBW in Perl

We describe in this tutorial several programming scenarios that use the SBW Perl API. Section 4
provides a detailed reference manual for all of the methods and objects used in this section,
plus others that are not discussed in this tutorial.

3.1 Method Signatures

SBW uses a textual notation for describing method names, their parameters and return values.
A description of a method in this notation is called a method signature string. The syntax of
method signatures is shown in Figure 2.

Letter ::= ‘a’..‘z’,‘A’..‘Z’
Digit ::= ‘0’..‘9’
Space ::= (‘\t’ | ‘ ’)+
SName ::= ‘_’* (Letter | Digit) (Letter | Digit | ‘_’)*
Type ::= ‘int’ | ‘double’ | ‘string’ | ‘boolean’ | ‘byte’ | ArrayType | ListType
ArrayType ::= Type Space? ‘[]’
ListType ::= ‘{’ Space? ArgList Space? ‘}’
ArgList ::= (Type [Space SName] (Space? ‘,’ Space? Type [Space SName])*)?
ReturnType ::= ‘void’ | Type
VarArgList ::= (Space? ArgList [Space? ‘,’ Space? ‘...’] Space?) | Space? ‘...’ Space?
Signature ::= ReturnType Space SName Space? ‘(’ VarArgList ‘)’

Figure 2: Permissible syntax of method signatures, defined using the version of EBNF notation (Extended
Backus-Naur Form) used in the XML specification (Bray et al., 1998). The meta symbols ’(’ and ’)’ group
the items they enclose, ’[’ and ’]’ signify that the enclosed content is optional, ’*’ means “zero or more
times”, and ’+’ means “one or more times”.

5

In Figure 2 on the preceding page, the Signature element describes the signature of one
method. The Type enumeration refers to the different possible data types in an argument or
the method return value. Table 1 shows the correspondence between the values of Type shown
here and actual programming language data types. The character sequence ‘...’ is used in
argument lists to indicate that the remainder of the arguments are variable (roughly equivalent
to varargs in the C programming language). The ListType element indicates a list; it may be
left empty to indicate a list whose contents are unspecified.

The following are some examples of method signatures. The following describes a method that
takes a double parameter x as a parameter and returns a double value:

double f(double x)

The following is a method that returns an integer given a one dimensional array of integers:

int f(int[])

The following describes a method that takes a single string as argument and returns a list whose
elements are a string and a double. This also demonstrates that the SBW method signature
notation permits the inclusion of descriptive names such as name and value, to make signatures
easier for humans to discuss.

{string name, double value} f(int myindex)

The variable names are optional annotations and are ignored for purposes of comparing signa-
tures; the signature above is functionally equivalent to the following one:

{string, double} f(string)

The following is a method that returns an array of lists. The method takes no arguments, and
the content of the returned lists is undefined:

{}[] f()

As a special feature, SBW takes an empty list specifier (i.e., {}) as a wild-card that matches
any other list in another signature. Thus, the lists {} and (for example) {x, int y} are equal
as far as signature parsing is concerned.

Methods can also be declared as returning no value, using the type void:

void f(byte x, int[] y)

Finally, here is a method that takes a variable number of arguments but returns no value:

void f(...)

3.2 Data Types

In order to allow an SBW module written in one language to communicate with another written
in a different language, it is necessary in some instances for SBW to define its own data types.
We have tried to minimize this and use each programming language’s natural types as much
as possible. Table 1 on the next page shows the mappings for a subset of languages currently
supported in SBW. The following are noteworthy about the Perl mapping:

• Since Perl has no representation for scalars smaller than an integer, byte and boolean
values are represented as integers;

• SBW homogeneous arrays are represented as Perl lists, even though Perl lists are hetero-
geneous; and

• Perl hash objects are used to represent SBW heterogeneous lists.

6

SBW
Signature Perl Java C++ C Python

string string String std::string char * string

int integer int Integer a SBWInteger int

double double double Double a SBWDouble float

boolean integer boolean bool SBWBoolean int

byte integer byte unsigned char unsigned char string

array array array std::vector b array array c

or array

list hash java.util.List DataBlockWriter a SBWDataBlockWriter * list

DataBlockReader a SBWDataBlockReader *

Table 1: Data types supported in SBW and their corresponding programming language types. The “SBW
Signature” types are those permitted in service method signatures; they are described in Section 3.1. The
italicized names array and list represent the natural versions of these data types; i.e., in Java, arrays are such
things as “int[]”, “byte[]”, etc. Integer and SBWInteger are to defined to be a 32-bit signed integer (the
same as the primitive int and integer types in the other languages). Double and SBWDouble are defined
to be a double-precision floating-point number in IEEE 754 format (the same as the primitive double

type defined in the other languages). aSBW symbols in the C++ library are defined in the namespace

SystemsBiologyWorkbench. bIn the C++ library, std::vector is used for 1-D arrays and raw C++
arrays are used for 2-D arrays. cIn Python, 1-D and 2-D arrays are implemented using the array type from
the Numerical Python package (Ascher et al., 2001).

These rules only apply to the methods on objects which serve as proxies for services in other
modules. These proxies are created dynamically by the Perl SBW library.

The form of Perl hash objects used to represent SBW heterogeneous lists depends on the
signature of the SBW service method being called. The SBW Perl library expects a hash
object in the place of SBW lists. The keys of the hash object are taken from field names in the
SBW list definition in the signature. As discussed in in Section 3.1, the field names in a list
are optional in SBW. Where these are not supplied by the method signature, the hash keys in
the Perl API are of the form elementn , where n is the position of the item in the list starting
at 0.

For example, a method with the following signature,

void plotPoints({double x, double y}[])

can be called from Perl as follows:

$object->plotPoints([{ x => 0.1, y => 0.2 }, { x => 0.3, y => 0.4 }]);

A method with the following signature,

void plotEdges({double, double}[])

(note that it doesn’t have named fields), can be called as follows:

$object->plotEdges(
[{ element0 => 0.1, element1 => 0.2 }, { element0 => 0.3, element1 => 0.4 }]);

The latter form is also used when no internal type information is given for a list; i.e., when the
SBW method signature is {}.

Data objects that are not scalar are returned from SBW method calls as references. All of the
links within the returned structures between non-scalar objects are by reference. The objects
passed to proxy methods can use references as the caller prefers.

7

3.3 Calling a Known Module

The simplest use of SBW consists of invoking services on a module. The simplest case of
invoking services on a module is when the module identification name and service identification
names are known by the programmer in advance.

We begin with a simple example that involves calling a service named “Trig” on a module
named “edu.caltech.trigonometry”. Let us assume that the interface for service “Trig” consists
of two methods:

double sin(double)
double cos(double)

The following Perl program fragment illustrates making a call to one of these methods. In this
example, the program executes one method on another module.

use lib ’SBW HOME /lib’
use SBW;

$module = SBW::getModuleInstance("edu.caltech.trigonometry");
$service = $module->findServiceByName("Trig");
$trig = $service->getServiceObject();
$trig->sin(x);

(The term SBW HOME above stands for the path to the SBW installation directory on your
computer; it is not meant as a literal string. You have to substitute the appropriate pathname.
If you installed SBW using the SBW installer, this directory is where you told the installer to
place SBW.) Let us assume there is a module identified as “edu.caltech.trigonometry” and that
it has a service named “Trig”. We want to invoke the method sin on this service. The first step
is to access an instance of the module from our program and obtain an object representing it.
This is accomplished using SBW::getModuleInstance which returns an SBW::Module object.
Then, we obtain an object representing the specific desired service on that module instance using
findServiceByName on the SBW::Module object. The findServiceByName method returns a
SBW::Service object. The SBW Perl interface makes accessing the SBW methods of this
service convenient: the getServiceObject method returns a proxy object for the service (here
assigned to the variable trig), and the proxy object permits calling the sin method directly.

The call to the sin method causes (underneath it all) messages to be sent to, and returned
from, the implementing module. This is a blocking operation—the caller waits for a reply.

The Perl API uses the Perl croak exception handling mechanism to handle error states. There-
fore its is possible to trap SBW errors using eval. Further data on the last SBW error can
obtained using the SBW::SBWException module as documented in Section 4.5.

3.4 Calling a Known Service Having a Complex Return Value

The example above involved simple parameters and return values to and from service methods.
However, SBW supports more elaborate data structures than those used so far. In this section,
we present an example of calling a service method having a complex return value.

In order to allow method parameters and return values to be described in a language-
independent manner, SBW uses the simple notation for method signatures described earlier
in Section 3.1. For our purposes in this section, we explain the meanings of just those parts of
the notation we actually need here.

The following is a signature definition for a method called loadSBMLModel that accepts a single
string and returns an array of lists; each item in the array of lists consists of a string and a
double floating-point value:

{string name, double x}[] loadSBMLModel(string sbml)

8

Let us also assume that there already exists in our program an instance of a SBW::Service
object that implements this interface, assigned to a variable named service. As shown before,
we can ask SBW to create a proxy object for this interface as follows:

$simulator = $service->getServiceObject();

Given this, we can call method loadSBMLModel on the proxy object and get the array of lists
it returns. Obtaining the individual elements of each list is a simple matter of using standard
Perl hash operators. To illustrate this the following code fragment shows one approach to
iterating through the list returned by loadSBMLModel and extracting the two elements in each
list. In this example, the result of the call to $simulator->loadSBMLModel(sbml) is stored in
the variable parameters. A foreach loop then iterates over each element in the parameters
array.

// Assume that something assigns a value to variable sbml.
...
$parameters = $simulator->loadSBMLModel($sbml);
...
foreach $parameter (@$parameters)
{

$name = $parameter->{name};
$value = $parameter->{x};

// Do something with parameter data here...
}

The hash keys are taken from the method signature on the called module instance. If the items
in the list are not labeled in the signature the Perl API module substitutes keys of the form
elementn where n is the integer position of the item in the list starting from 0. If the signature
was:

{string, double}[] loadSBMLModel(string sbml)

then the following code would be used to recover the data:

$name = $parameter->{element0};
$value = $parameter->{element1};

9

4 SBW Perl API Reference

This section is a reference for the different components of the SBW Perl API. The classes in
the API are summarized in Table 2 and described in detail in the paragraphs that follow.

Starting
Module/Class Role Section Page

SBW Provides static methods for general SBW
operations such as connecting to SBW and
searching for services and modules

4.2 14

SBW::Module Represents a running module instance and
provides access to basic information about
the module as well as ways of listing and
searching the module’s services

4.3 17

SBW::ModuleDescriptor Describes a module that may or may not be
running; the information corresponds to the
static data recorded in the SBW Broker’s reg-
istry

4.4 18

SBW::SBWException The stores information on exceptions thrown
by SBW methods and client-side service
proxies

4.5 19

SBW::Service Represents a service and provides access to
the service methods implemented by a mod-
ule instance

4.6 21

SBW::ServiceDescriptor Describes basic information about a service,
such as its name and category; also provides
a way to get a Service object

4.7 23

SBW::ServiceMethod Describes a method on a service and provides
access to the method signature

4.8 24

SBW::Signature Represents a method signature in a struc-
tured form and allows translation to and from
text string form

4.9 25

SBW::SignatureElement A component of a method signature consist-
ing of a data type and optionally a variable
name

4.10 26

SBW::SignatureType Represents a data type in a method signature 4.11 27

Table 2: The classes defined by the SBW Perl API, presented in alphabetical order.

4.1 General Concepts in the SBW API

The SBW distribution and the code examples in this manual are designed for use with Perl
distribution version 5.6 (Wall, 2002). Before describing the classes provided by the SBW Perl
API library, we begin by discussing some general points about the Systems Biology Workbench
framework and its implementation.

4.1.1 Relationships between the Different Elements in the SBW API

When dealing with the different objects listed in Table 2, it is useful to keep in mind the
distinction between a local representation of a module, service or service method, and its
implementation in an actual module instance.

10

The objects of class SBW::Module and SBW::Service are local representations (proxies) for
other, concrete objects that exist elsewhere in the SBW system. Figure 3 illustrates how the
proxies are related to the objects they represent.

Figure 3: Relationships between proxy objects in a client and the corresponding objects in a module instance.

SBW generally avoids caching all but the most basic information, to avoid problems that might
arise if a remote module changed some part of its definition and the cached information fell out
of date. However, some information is cached for efficiency and any method that may involve
communicating with a remote module can potentially cause a Perl exception.

4.1.2 On Naming Modules, Services and Methods

Module Names. Each module has two names: a unique module identification name, and a name
for display. Module identification names are used by SBW for identifying modules running in a
session. They are compared by SBW on a case-sensitive basis. A module’s identification name
should be chosen so that it is unlikely to be equal to any other module identification name
running on a particular computer. To achieve this, we suggest the following convention: use
the reverse domain name, followed by a ‘.’, followed by the module name, all in lower case.
The reverse domain name is simply the reverse of an Internet domain name string affiliated
with the module developer. (For the SBW team at Caltech, this is typically “edu.caltech”.)
An example of a module identification name following this convention is “edu.caltech.gibson”.

This scheme for module identification names is voluntary. The API will still work with other
naming schemes. The objective is simply to make module names likely to be unique to one
host (or more specifically, to one running instance of the SBW Broker).

Service Names. Each service has two names: a unique service identification name, and a name
for display. A service identification name must be unique to a given module when compared in

11

a case-sensitive manner. Service identification names must follow the SName syntax as defined
in Section 3.1, and by convention start with a capital letter.

Service display names are intended for use in user menus and other similar situations. They
should be chosen to be fairly short and descriptive, but at the same time, fairly unique. Names
that are too general, such as “Simulator”, are usually not good choices.

Method Names. Method names must follow the SName syntax defined in Figure 2 on page 5.
By convention, they should start with a lower case letter. Method names are not compared
outside of the context of method signatures.

Method signatures are compared using the same scheme as in programming languages such as
C++ and Java. This means, for example, that a service may define more than one method
with the same name, as long as the total signatures for the methods are different. Note that
in some situation this can make methods inaccessible to Perl. This issue is described in more
detail in section 4.6.

4.1.3 Module Management Types

Depending on the kind of services a module implements and the style of use intended, it may
be more suitable to have multiple copies (instances) of a module running, or to have only one
instance running. Modules that do not keep state information are often best implemented as
having only one copy running in an SBW system. For example, a module that performs data
conversion operations could run as a unique instance in an SBW system, avoiding the resource
usage that would result if a fresh copy were started every time that a client module requested
its services.

SBW allows a module developer to designate the type of management that SBW should as-
sume for a module. In the Perl API, this is indicated by the value returned by the method
$moduleDescriptor->getManagementType(). The possible management types are:

• $SBW::UniqueModule: Indicates that only one instance of this module should be started
up by SBW, and that it should be shared among all requests for the services it implements.

• $SBW::SelfManagedModule: Indicates that multiple copies of the module may run and
that the module manages itself.

4.1.4 Propagating Exceptions in SBW

Exceptions that occur in a module during the execution of a service method are propagated
back by SBW to the module that invoked the service. If the exception was thrown deliberately
by the module, for example to indicate that the caller has made a mistake in its invocation, the
caller will receive an exception of type SBWApplicationException. The latter is the only kind
of SBW exception that a module can create. Otherwise, if the exception involves a problem in
SBW or incorrect use of SBW, the caller will receive an instance of an SBW exception specific to
the problem. Section 4.5 discusses SBW exceptions in more detail and lists the kinds possible.

4.1.5 Distributed Computing with SBW

SBW supports the ability to run modules on multiple computers. It does this by starting an
SBW Broker on each remote computer involved in response to certain forms of invocations of
SBW.getModuleInstance (described in Section 4.2). At the time of this writing, SBW uses the
Secure Shell (SSH; Barrett and Silverman, 2001) to start remote Brokers and provide a secure
communications channel between Brokers running on separate computers.

In order to use this facility, you must set up SSH for password-free operation between the
computers involved. Appendix A describes how to do this.

Once SSH is set up in this manner, remote SBW operations are transparent: modules commu-

12

nicate with each other in exactly the same way as when running on the same host computer.
The Brokers on each host take care of routing messages to their proper destinations.

13

4.2 Module: SBW

The SBW module provides the following functions for various fundamental operations. There
are no object methods in this module.

SBW::connect()

Connect to SBW on the local computer as a client. The connection is anonymous.
Other modules querying the Broker about which modules are connected to SBW will be
informed that a module is connected, but without a name or other information.
A client can only be connected to one SBW Broker at a time; attempting to call
connect() twice (without calling disconnect() in the interim) will result in an ex-
ception. Connection attempts that end in failure (e.g., due to a network interruption)
will also result in an exception.
Note that this function does not normally need to be called. All the other functions
in the SBW Perl API will automatically connect to the local SBW Broker if the client
is not already connected. The function is nevertheless provided in case client modules
need finer control over their connections to SBW.

SBW::connect(hostNameOrAddress)

Deprecated method. The introduction of proper networked distributed operation in
SBW version 1.0 makes this method obsolete. Programs should always connect
to their local Broker using connect() and connect multiple Brokers together using
link(hostNameOrAddress).
Connects (as a client) to the SBW Broker running on the computer identified by the host
name or IP address in parameter hostNameOrAddress. hostNameOrAddress should be
supplied as a string. The connection is anonymous. Other modules querying the Broker
about which modules are connected to SBW will be informed that a module is connected,
but without a name or other information.
This is a variation on the plain connect() method described above. The same exception
conditions apply.
Note that, as with the plain connect(), this function does not normally need to be
called. All the other functions in the SBW Perl API will automatically connect to the
local SBW Broker if the client is not already connected. The function is nevertheless
provided in case client modules need finer control over their connections to SBW.

SBW::disconnect()

Notifies SBW that this application will no longer be consuming services. Invoking this
function will first send a notification message to the Broker, then close the network
socket and terminate the thread handling message processing.
A client can only be connected to one SBW Broker at a time; therefore, unlike the two
versions of the connect method, there is no variant of disconnect that takes a host
name or address as argument.

static void SBW::link(String hostNameOrAddress)

Tells the local SBW Broker to connect to another SBW Broker running on a remote
computer, starting the remote Broker first if necessary. The remote host is identified by
the host name or IP address in hostNameOrAddress.
It should not normally be necessary to call this method when an application simply wants
to start modules on remote hosts. The SBW::getModuleInstance() call described below
will start remote Brokers and modules if the given module name has a specific form.

The following method provide ways of discovering services and service categories.

14

SBW::getServiceCategories(parentCategory)

Returns an array of strings listing all of the immediate subcategories of the given category
parentCategory. An empty string as the value of parentCategory stands for the root
of the hierarchy tree; thus, getServiceCategories("") returns the top-level categories
known to SBW.

SBW::findServices(category)

Returns an array of SBW::ServiceDescriptor objects corresponding to all of the ser-
vices registered with SBW in the given category and subcategories of category. An
example use of this method might be to use the category “Analysis” to query for all the
services which provide analyses of SBML models.

SBW::findServices(category, recursive)

Returns an array of SBW::ServiceDescriptor objects corresponding to all of the ser-
vices registered with SBW in the given category. The boolean flag recursive indi-
cates whether the search should be performed recursively through the service hierarchy.
If true, the string category is matched against all categories and subcategories. An
example use of this method might be to use the category “Analysis” to query for all the
services which provide analyses of SBML models.

The following methods are concerned with obtaining module instances from the SBW Broker.

SBW::getModuleInstance(moduleName)

Returns an instance of the given module represented by an SBW::Module object. If
the module instance has management type $SBW::UniqueModule (see Section 4.1.3 on
page 12), then a SBW::Module object corresponding to an existing module instance is
returned. Otherwise, a new module instance is launched by the SBW Broker. A new
instance is always launched if no existing instance exists.
Various unusual conditions may lead to exceptions. These include: null module names,
inability to contact the SBW Broker, inability to start the requested module, etc.

SBW::getExistingModuleInstances()

Returns an array of SBW::Module objects corresponding to every module connected to
the system at this time.

SBW::getExistingModuleInstances(name)

Returns an array of SBW::Module objects corresponding to every running module that
has the given module unique name. (Multiple instances of a module may be running if
the module does not have management type $SBW::UniqueModule and multiple client
modules have requested instances.)

SBW::getModuleDescriptor(name)

Returns a SBW::ModuleDescriptor object corresponding to the named module.

SBW::getModuleDescriptors()

Returns an array of SBW::ModuleDescriptor objects corresponding to all modules
known to the local SBW Broker and remote brokers connected to the local Broker.
Only registered modules are included.

15

SBW::getModuleDescriptors(includeRunning)

Returns an array of SBW::ModuleDescriptor objects corresponding to all modules
known to the known to the local SBW Broker and remote Brokers connected to the
local Broker. If the boolean flag includeRunning is false, only registered modules
will be included. If the flag is true, this method additionally includes running module
instances. The difference in behavior is relevant when there are unregistered modules
connected to SBW: when includeRunning is false, unregistered modules are not in-
cluded in the array of module descriptors returned.

SBW::getModuleDescriptors(includeRunning, localOnly)

Returns an array of SBW::ModuleDescriptor objects corresponding to all modules
known to the local Broker as well as any remote Brokers connected to the local one.
If the boolean flag includeRunning is false, only registered modules will be included.
If the flag is true, this method additionally includes running module instances. The
difference in behavior is relevant when there are unregistered modules connected to
SBW: when includeRunning is false, unregistered modules are not included in the
array of module descriptors returned.
If the boolean flag localOnly is true, then only modules registered with or connected
to the local SBW Broker are included in the set of descriptors returned. If localOnly
is false, all modules known to all Brokers are included in the set.

SBW::getVersion()

Returns the version of the SBW C API library on which the Perl extension is based.

SBW::getBrokerVersion()

Returns the version of the SBW Broker.

16

4.3 Module: SBW::Module

The SBW::Module class represents an instance of a module. A SBW::Module class object stands
for an actual module instance, meaning the corresponding application, that is running on the
user’s computer or perhaps another computer. Having a reference to a SBW::Module object in a
program implies that the SBW Broker has started up at least one instance of the corresponding
real module. (This is in contrast to having an instance of a SBW::ModuleDescriptor object,
described in the next section; a SBW::ModuleDescriptor describes a module but does not
imply that an instance of the module is necessarily running.)

This module has the following methods:

getDescriptor()

Returns a SBW::ModuleDescriptor object (Section 4.4) that describes the module. The
descriptor can be used to obtain the module’s display name, management type, etc.

A Module object contains zero or more Service objects which represent the services imple-
mented by the module. These services can be listed or searched by name and category using
the three methods getServices, findServiceByCategory and findServiceByName.

getServices()

Returns an array of SBW::Service objects (cf. Section 4.6) representing the services
implemented by this module.

findServiceByName(serviceName)

Returns a SBW::Service object (Section 4.6) representing the service with the given
name implemented by this module instance. The name matching performed is case-
sensitive and exact.

findServicesByCategory(serviceCategory)

Returns an array of SBW::Service objects (Section 4.6) corresponding to all the services
in the given category implemented by this module instance. Returns an empty array
if there is no service with a category that matches the string serviceCategory. The
name matching performed is case-sensitive and exact.

The lifetime of a given module X is determined by a combination of two factors: (1) the
management type of the module and (2) the number of modules that are actively communicating
with X.

shutdown()

Tells the SBW Broker to disconnect from this module instance; this normally causes the
module instance to shut down.

17

4.4 Module: SBW::ModuleDescriptor

A module descriptor describes a module. It embodies the static data recorded by the SBW
Broker in the module registry (see Section 2.1). The corresponding real module instance may
or may not be running.

It may seem confusing at first that there may be no running module instance corresponding
to a module descriptor returned by SBW. However, the utility of this becomes clear when one
considers the need to list all modules known by the system. SBW provides methods, such
as SBW::getModuleDescriptors, that return module descriptors for all modules known by
the Broker. It would be inefficient, and in some cases downright impractical, if every query
for a module descriptor resulted in a module instance being started by SBW. Thus, module
descriptors are decoupled from the running state of a module.

Module descriptors are useful for finding out a module’s basic characteristics, such as its name,
without necessarily starting up an instance of the module.

SBW::ModuleDescriptor has the following methods:

getName()

Returns the unique identification name of the module. This name typically follows a
notational convention such as that outlined in Section 4.1.2; for example, a module’s
unique name might be “edu.caltech.trigonometry”.

getDisplayName()

Returns the display name of the module. This is suitable for showing to users in a menu
or list. Although there is no fixed limit on the length of display names, they should be
kept short.

getCommandLine()

Returns the command line used to start up this module. Depending on how the module
is implemented, the command line may have been constructed automatically by SBW
or it may have been explicitly supplied by the programmer.

getManagementType()

Returns an integer indicating the management type of the module (Section 4.1.3). The
management type indicates how the lifetime of the module is managed by SBW.

getHelp()

Returns a help string for the module. This is an optional description of the module
provided by the module’s author(s). It is informational only and not actually required
in the definition of a module.

getServiceDescriptors()

Returns an array of service descriptors containing information for the registered services
provided by this module.

18

4.5 Module: SBW::SBWException

This module allows access to the error state of the SBW API. Exceptions raised by the Perl
library independently of the underlying C implementation will not set a pending exception
accessible by this class. SBW::SBWException has no object methods. SBW::SBWException has
the following functions:

SBW::SBWException::getMessage()

Returns the message string associated with the pending exception. This is a string that
can be displayed to the user. This message is identical to the message passed to the
croak command which throws a Perl exception.

SBW::SBWException::getDetailedMessage()

Returns additional details about the pending exception. This is typically at a level best
understood by developers and may include a stack trace.

SBW::SBWException::getCode()

Returns the exception code of the pending exception. Table 3 on the next page lists
each exception code and its meaning. This function returns -1 if there is no pending
exception.

19

Exception Meaning

$SBW::ApplicationExceptionCode Application-specific exception, thrown deliberately
by a module. This is the only type of exception that
can be created by a module in SBW.

$SBW::RawExceptionCode Wrapper around any exceptions inadvertently
thrown by a module.

$SBW::CommunicationExceptionCode Communications between a caller and receiver
failed, possibly due to a lost connection.

$SBW::ModuleStartExceptionCode An attempt to start a new module failed.

$SBW::TypeMismatchExceptionCode The type of data element that was attempted to be
read from a message was not the type found. This
often indicates a mismatch between the messages
expected by a caller and receiver.

$SBW::IncompatibleMethodSignatureExceptionCode An interface or class definition uses method signa-
tures that don’t correspond to the signatures on the
corresponding service.

$SBW::ModuleIdSyntaxExceptionCode Indicates that a supplied module instance identifier
has incorrect syntax.

$SBW::IncorrectCategorySyntaxExceptionCode A supplied category string has incorrect syntax.
This is thrown by methods that find or search ser-
vices by categories.

$SBW::ServiceNotFoundExceptionCode Requested service is not present on this module.

$SBW::MethodTypeNotBlockTypeExceptionCode The supplied class uses types which are not SBW
message data block types.

$SBW::MethodAmbiguousExceptionCode Thrown by search methods such as getMethod on
the Service class to indicate that the given sig-
nature or signature component matches with more
than one method on the given service.

$SBW::UnsupportedObjectTypeExceptionCode The library encountered an object of a type that it
cannot encode or decode from a message block.

$SBW::MethodNotFound The given method identification number, signature
or partial signature does not match any of the meth-
ods that exist on a given service. This can occur if
a caller uses the low-level SBW API to attempt to
invoke a method on a service and the service has no
method with that index.

$SBW::SignatureSyntaxError Thrown if a signature string does not contain a valid
SBW signature.

$SBW::ModuleDefinitionExceptionCode Thrown by the ModuleImpl constructors if any as-
pect of a module definition is incorrect.

$SBW::ModuleNotFoundExceptionCode Thrown if the given module identification name
doesn’t match any module known to SBW.

$SBW::BrokerStartExceptionCode Thrown if a problem occurs starting an SBW Bro-
ker

Table 3: Exceptions in SBW.

20

4.6 Module: SBW::Service

The SBW::Service class represents a service, an interface to resources inside a module. Ob-
taining an instance of a SBW::Service object implies that a module implementing the service
has been launched by the SBW Broker. This class has the following methods:

getDescriptor()

Returns a SBW::ServiceDescriptor object (see Section 4.6) corresponding to this ser-
vice. The service descriptor holds information about this service’s unique name, display
name, and other attributes.

getModule()

Returns a SBW::Module class object corresponding to the module that implements this
service. Since the module instance must already be running, this action does not result in
a new instance being launched; however, it does create a new object of class SBW::Module
referring to the same instance.

The most powerful methods on class Service are the following two; they return objects that
serve as proxies for the service. Most applications access other SBW modules by first obtaining
a proxy object using one of these methods.

getServiceObject()

Returns a proxy object for this service. The returned object will have an interface
defined by the signatures exposed by the service implementation. Section 3.2 describes
the mapping between Perl and SBW types.
In SBW it is possible to have methods with the same name on a service. These methods
must have different argument types. The Perl library uses the types of the supplied
arguments to determine the method to be called. As some SBW types have no direct
correspondence in Perl, it is possible that some methods will be inaccessible from Perl—
in particular, this will occur when a method has the same name and similar arguments
to another method. This is a limitation due to programming language differences.

getServiceObject(warnAboutInaccessableMethods)

Returns a proxy object for this service. The returned object will have an interface
defined by the signatures exposed by the service implementation. Section 3.2 describes
the mapping between Perl and SBW types.
In SBW it is possible to have methods with the same name on a service. These methods
must have different argument types. The Perl library uses the types of the supplied
arguments to determine the method to be called. As some SBW types have no direct
correspondence in Perl, it is possible that some methods will be inaccessible from Perl—
in particular, this will occur when a method has the same name and similar arguments
to another method. This is a limitation due to programming language differences. If
argument warnAboutInAccessableMethods is true, then a message is printed on the
standard output stream when this masking occurs.

The following two methods return information about the methods defined on this service. The
information is represented using SBW::ServiceMethod class objects (see Section 4.8 on page 24),
which only serve to describe service methods at the level of name, signature string, signature
structure, and help string.

getMethods()

Returns an array of SBW::ServiceMethod objects, one for each of the methods on this
service.

21

getMethod(nameAndArgs)

Returns a ServiceMethod object corresponding to the single method described by the
partial signature string nameAndArgs. The parameter may consist of only a method
name, or a name and arguments or complete signature written in the form discussed in
Section 3.1 on page 5. Specifically, the allowable syntax is:

SName

or

[ReturnType Space] SName Space? ’(’ VarArgList ’)’

where the optional arguments list is used to locate specific methods with the same name.
The return type is ignored when matching signatures. If the syntax is incorrect, this
method will set the exception code to $SBW::SignatureSyntaxException.
The given name (and optional arguments) is compared to the parsed signatures of the
methods on the service. If more than one method on the service matches the given ar-
gument, this method will set the exception code to $SBW::MethodAmbiguousException.

22

4.7 Module: SBW::ServiceDescriptor

A service descriptor is used to describe a single service provided by a resource available through
SBW. The information is obtained from the SBW Broker.

A SBW::ServiceDescriptor object is similar to a SBW::ModuleDescriptor (Section 4.4 on
page 18) in that it provides basic information about a service, but does not necessarily imply
that a module instance implementing the service has been started up. This decoupling of
services from service descriptors allows service descriptor objects to be used as handles to
potential services. For example, if a list of services in a given category is to be displayed to the
user before those services are invoked, a representation is required of those services outside the
context of a module instance.

SBW::ServiceDescriptor has the following methods:

getServiceInModuleInstance()

Returns a SBW::Service object (Section 4.6 on page 21) corresponding to this service.
Since SBW::Service objects are tied to running module instances, invoking this method
will either create a new module instance or reuse an existing instance (depending on the
module’s management type and whether an instance already exists).

getName()

Returns the unique identification of the service. This name must follow the conventions
outlined in Section 4.1.2. In particular, the name must use the SName syntax as defined
in Figure 2 on page 5, and should start with a capital letter. An example of a service
name is “Simulation”.

getDisplayName()

Returns the display name of the service. This is suitable for showing to users in a menu
or list. Although there is no fixed limit on the length of display names, they should be
kept short.

getCategory()

Returns the category of this service. Service categories can consist of any sequence of
non-control characters excluding \n, \ and / but including space. Service category strings
as used in the API are sequences of one or more service category level names separated
by either \ or / characters. An example service category is “Analysis/Bifurcation”.

getHelp()

Returns a help string for the service. This is an optional description of the service
provided for informational purposes only.

getModuleDescriptor()

Returns a SBW::ModuleDescriptor object for the module that implements this service.

23

4.8 Module: SBW::ServiceMethod

This class is used to describe a method on a service. (In the Perl SBW API, its role is limited to
being informational only, although in some of the other language bindings the ServiceMethod
class has additional functionality.)

getName()

Returns the name of this method.

getSignatureString()

Returns the signature of this method as a string. Contrast this to the next method,
getSignature(), which returns a tree-structure representation of the method signature.

getSignature()

Returns a SBW::Signature object (Section 4.9 on the next page) representing the sig-
nature for this service method. The SBW::Signature object provides access to a parsed
representation of the individual components of a method signature.

getHelp()

Returns the documentation string for this service method.

24

4.9 Module: SBW::Signature

The Signature class is used to represent signatures in a parsed, normalized format. This allows
more precise matching of method signatures than using simple string forms of signatures.

getName()

Returns the name of this method.

getArguments()

Returns a reference to an array of SBW::SignatureElement class objects, one for each
of the arguments for this method. The order of the elements in the array is the order of
the arguments in the method signature.

getReturnType()

Returns a single SBW::SignatureElement class object representing the return type of
this method.

toString()

Converts this method signature to string form.

25

4.10 Module: SBW::SignatureElement

A signature element is a name-type pair in a method signature, with the name portion being
optional. This provides a single common structure for representing both method arguments
(where an argument may be either a data type or a data type followed by a name) and list
content types. For example, the method signature "void foo(string a, int b)" contains
two signature elements for its arguments, string a and int b.

This class has the following methods:

getName()

Returns the name portion of this signature element. This may be null.

getType()

Returns a SBW::SignatureType class object (Section 4.11 on the following page) repre-
senting the data type of this signature element.

26

4.11 Module: SBW::SignatureType

A SBW::SignatureType class object represents a data type in a signature. The allowable types
are those of the element Type in the syntax definition for method signatures in Figure 2 on
page 5.

This class differs from the equivalent Java class in that multiple array dimensions are modeled
on the same SBW::SignatureType object rather than by nested SBW::SignatureType objects
of type $SBW::ArrayType (hence the need for the additional getArrayDimensions method).

This class has the following methods:

getType()

This method returns the integer encoding of this type which can be one of:

• $SBW::ByteType

• $SBW::IntegerType

• $SBW::DoubleType

• $SBW::BooleanType

• $SBW::StringType

• $SBW::ArrayType

• $SBW::ListType

• $SBW::VoidType

getArrayInnerType()

If this SBW::SignatureType object represents an array type, this method returns the
data type of the elements in the array.

getArrayDimensions()

If this SBW::SignatureType object represents an array type, this method returns the
number of dimensions of the array.

getListContents()

If this SBW::SignatureType object represents an list type, this method returns a refer-
ence to an array of SBW::SignatureElement class objects corresponding to the types of
each element in the list.

toString()

Returns a string corresponding to the data type. The possible types are byte, int,
double, boolean, string, void, [] to indicate an array, and to indicate a list.

27

A Setting Up SSH for Distributed SBW Operation

Although many situations involve all modules running on the same host computer, SBW sup-
ports the ability to run modules on remote hosts as well. Each remote host runs a separate
Broker process; modules on that host connect to the Broker (the local Broker for that host),
and each Broker Broker arranges to route messages between modules whether they are local or
remote.

When a remote Broker is started, each existing Broker is informed of the modules that are
registered with it. Every Broker thus knows about every other Broker’s modules, and offers
an amalgamated view to any module that queries for available modules and services. Figure 4
illustrates the organization of modules and Brokers when multiple Brokers are running.

A B

C

D
E

F

G

host1

host2

host3

Figure 4: Example of multiple Brokers and multiple modules running on separate computers. Each module
(represented by the yellow circles) connects only to the Broker on the local host; the Brokers on separate
hosts connect to each other and route messages between modules as appropriate.

Brokers are started automatically when a module is requested on a remote host. There are two
API calls that can cause a remote Broker to be started:

• SBW.getModuleInstance(moduleName), described in Section 4.2, accepts module names
of the form hostName:moduleName. If the argument has this form, then the hostName
part is used as the name of the remote host where the module should be started.

• SBW.link(hostNameOrAddress), described in Section 4.2, allows a program to connect
explicitly to a Broker running on the host indicated by parameter hostNameOrAddress.
This is useful when a module wishes to browse the list of modules and services known
to a remote Broker. However, in practice, most remote Brokers and modules are started
using the getModuleInstance call described above.

SBW uses SSH (Barrett and Silverman, 2001) to start remote Brokers and establish a secure
tunnel connection between Brokers on separate hosts. In order for this to work, the following
conditions must be met:

28

• The remote host must be running the SSH daemon and allow remote SSH connections.
This is the case for many Unix/Linux hosts; if SSH is not enabled on the target host,
you must either enable it yourself (if you have administrative control over the computer),
or ask your systems administrator to enable SSH for you. If the remote host is running
Microsoft Windows, you will first have to install an SSH daemon package, and then enable
incoming SSH connections on that host. The steps for doing this are beyond the scope of
this API manual. [Since SSH is a very popular system, it is easy to find instructions on
the internet and in books such as the one by Barrett and Silverman (2001).]

• You must have set up your SSH accounts in such a way that you can use SSH to run
commands on the remote host without having to supply a password. A good test to verify
that this is the case (at least in the case of a remote Unix/Linux host) is to try typing a
command such as the following in a command shell:

ssh remotehost date

The date command simply returns a one-line reply indicating the current date. If SSH is
set up properly for password-less execution, then the command above should not prompt
you for a password. If it prompts you for a password, your SSH account or other elements
are not set up properly.

Once SSH is set up properly, it is possible to start remote modules and Brokers seamlessly
using the two API calls listed above.

29

References

Arkin, A. P. (2001). Simulac and Deduce. Available via the World Wide Web at http:
//gobi.lbl.gov/~aparkin/Stuff/Software.html.

Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J., and Oliphant, T. (2001). Numerical
Python. Available via the World Wide Web at http://www.numpy.org.

Barrett, D. J. and Silverman, R. E. (2001). SSH, the Secure Shell. O’Reilly & Associates,
Sebastopol, CA, USA.

Bray, D., Firth, C., Le Novère, N., and Shimizu, T. (2001). StochSim. Available via the World
Wide Web at http://www.zoo.cam.ac.uk/comp-cell/StochSim.html.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Extensible markup language (XML)
1.0, W3C recommendation 10-February-1998. Available via the World Wide Web at http:
//www.w3.org/TR/1998/REC-xml-19980210.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons.

Ginkel, M., Kremling, A., Tränkle, F., Gilles, E. D., and Zeitz, M. (2000). Application of
the process modeling tool ProMot to the modeling of metabolic networks. In Troch, I. and
Breitenecker, F., editors, Proceedings of the 3rd MATHMOD, pages 525–528.

Goryanin, I. (2001). DBsolve: Software for metabolic, enzymatic and receptor-ligand bind-
ing simulation. Available via the World Wide Web at http://websites.ntl.com/~igor.
goryanin/.

Goryanin, I., Hodgman, T. C., and Selkov, E. (1999). Mathematical simulation and analysis
of cellular metabolism and regulation. Bioinformatics, 15(9):749–758.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001a). Introduction to the Systems
Biology Workbench. Available via the World Wide Web at http://www.cds.caltech.edu/
erato/sbw/docs/intro.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001b). Systems Biology Markup
Language (SBML) Level 1: Structures and facilities for basic model definitions. Available via
the World Wide Web at http://www.cds.caltech.edu/erato.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., and Kitano, H. (2001c).
The ERATO Systems Biology Workbench: Architectural evolution. In Yi, T.-M., Hucka, M.,
Morohashi, M., and Kitano, H., editors, Proceedings of the Second International Conference
on Systems Biology, pages 352–361. Omnipress, Inc.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., and Kitano, H. (2002). The
ERATO Systems Biology Workbench: Enabling interaction and exchange between software
tools for computational biology. In Altman, R. B., Dunker, A. K., Hunker, L., Lauderdale, K.,
and Klein, T. E., editors, Pacific Symposium on Biocomputing 2002. World Scientific Press.

Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with
Gepasi 3. Trends in Biochemical Sciences, 22:361–363.

Mendes, P. (2001). Gepasi 3.21. Available via the World Wide Web at http://www.gepasi.
org.

Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in an intracellular
signalling pathway. Journal of Theoretical Biology, 192:117–128.

30

http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://www.numpy.org
http://www.zoo.cam.ac.uk/comp-cell/StochSim.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://websites.ntl.com/~igor.goryanin/
http://websites.ntl.com/~igor.goryanin/
http://www.cds.caltech.edu/erato/sbw/docs/intro
http://www.cds.caltech.edu/erato/sbw/docs/intro
http://www.cds.caltech.edu/erato
http://www.gepasi.org
http://www.gepasi.org

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J.-
H. S., Rohwer, J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of
the 9th International Meeting on BioThermoKinetics. Stellenbosch University Press.

Sauro, H. M. and Fell, D. A. (1991). SCAMP: A metabolic simulator and control analysis
program. Mathl. Comput. Modelling, 15:15–28.

Sauro, H. M., Hucka, M., Finney, A., and Bolouri, H. (2001). The Systems Biology Workbench
concept demonstrator: Design and implementation. Available via the World Wide Web at
http://www.cds.caltech.edu/erato/sbw/docs/detailed-design/.

Schaff, J., Slepchenko, B., and Loew, L. M. (2000). Physiological modeling with the Virtual
Cell framework. In Johnson, M. and Brand, L., editors, Methods in Enzymology, volume 321,
pages 1–23. Academic Press, San Diego.

Schaff, J., Slepchenko, B., Morgan, F., Wagner, J., Resasco, D., Shin, D., Choi, Y. S., Loew,
L., Carson, J., Cowan, A., Moraru, I., Watras, J., Teraski, M., and Fink, C. (2001). Virtual
Cell. Available via the World Wide Web at http://www.nrcam.uchc.edu.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K.,
Tanida, S., Yugi, K., Venter, J. C., and Hutchison, C. (1999). E-Cell: Software environment
for whole cell simulation. Bioinformatics, 15(1):72–84.

Tomita, M., Nakayama, Y., Naito, Y., Shimizu, T., Hashimoto, K., Takahashi, K., Matsuzaki,
Y., Yugi, K., Miyoshi, F., Saito, Y., Kuroki, A., Ishida, T., Iwata, T., Yoneda, M., Kita,
M., Yamada, Y., Wang, E., Seno, S., Okayama, M., Kinoshita, A., Fujita, Y., Matsuo, R.,
Yanagihara, T., Watari, D., Ishinabe, S., and Miyamoto, S. (2001). E-Cell. Available via the
World Wide Web at http://www.e-cell.org/.

Wall, L. (2002). Perl 5.6. Available via the World Wide Web at http://www.cpan.org.

31

http://www.cds.caltech.edu/erato/sbw/docs/detailed-design/
http://www.nrcam.uchc.edu
http://www.e-cell.org/
http://www.cpan.org

	Introduction
	A Brief Tour of SBW
	Overview of SBW from a Programmer's Perspective

	A Tutorial on Programming with SBW in Perl
	Method Signatures
	Data Types
	Calling a Known Module
	Calling a Known Service Having a Complex Return Value

	SBW Perl API Reference
	General Concepts in the SBW API
	Module: SBW
	Module: SBW::Module
	Module: SBW::ModuleDescriptor
	Module: SBW::SBWException
	Module: SBW::Service
	Module: SBW::ServiceDescriptor
	Module: SBW::ServiceMethod
	Module: SBW::Signature
	Module: SBW::SignatureElement
	Module: SBW::SignatureType

	Setting Up SSH for Distributed SBW Operation
	

