Systems Biology Workbench

Java” Programmer’s Manual

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri

{mhucka ,afinney,hsauro, hbolouri}@cds .caltech.edu
Systems Biology Workbench Development Group
ERATO Kitano Systems Biology Project
Control and Dynamical Systems, MC 107-81
California Institute of Technology, Pasadena, CA 91125, USA

http://www.cds.caltech.edu/erato

Principal Investigators: John Doyle and Hiroaki Kitano

July 3, 2002

http://www.cds.caltech.edu/erato

Contents

1 Introduction

2 A Brief Tour of SBW
2.1 Overview of SBW from a Programmer's Perspective

3 A Tutorial on Programming with SBW in Java

Preliminary Note about Data Types

Preliminary Note about Accessing the APIs

31
3.2
3.3
3.4
35
3.6

Calling a Known Module
Implementing a Service

Finding Services in a Given Category o

Calling a Known Service

4 SBW lJava API Reference
Programming with the SBW Java APl Library
General Concepts in the SBW API

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Class: Module

Having a Complex Return Value

Class: ModuleDeSCriptor v v v v v i i ittt

Class: ModuleImpl . .
Class: SBW
Class: SBWException .
Class: SBWListener . .
Class: Service

Class: ServiceDescriptor

Class: ServiceMethod
Class: Signature . . .

Class: SignatureElement

Class: SignatureType

5 SBW Java Low-Level APl Reference

51
5.2
53
5.4
55
5.6
5.7
5.8

Using the Low-Level API
Identifiers
Methods Required to Be

Implemented by All Modules

Methods Implemented by the SBW Broker
Class: DataBlockWriter o v i i e
Class: DataBlockReader i i i i

Interface: Receiver . .
Interface: SBWLowLevel

A Complete Examples of Using the APlIs
A.l Example of Implementing a Module 0oL
A.2 Example of Calling a Service
A.3 Example of Finding Multiple Modules in a Category

B The sbw-make-jar Program

C Setting Up SSH for Distributed SBW Operation
References

Introduction

The aims of this manual are twofold: teaching programmers how to interface Java applications
to the Systems Biology Workbench (SBW), and providing a reference for the SBW Java APIs.
This manual complements the overviews of the SBW system provided by Hucka et al. (2001a,c,
2002) and the description by Sauro et al. (2001) of a prototype SBW implementation.

SBW provides a software integration environment that enables applications (potentially running
on separate machines) to learn about and communicate with each other. Applications can be
written to be providers of software services, or consumers, or both. The SBW communications
facilities allow heterogeneous packages to be connected together using a remote procedure call
mechanism; this mechanism uses a simple message-passing network protocol and allows either
synchronous or asynchronous invocations. The interfaces to SBW are encapsulated in client
libraries for different programming languages (currently C, C++, Delphi, Java, and Python,
with more anticipated), but the protocol is open and small, and developers may implement
their own interfaces to the system if they choose. The project is entirely open-source and all
specifications and implementations are freely and publicly available.

Frameworks for integrating disparate software packages are certainly not new. Compared to
other broker-based integration frameworks, SBW has the following combination of features:

e Free, open-source implementations available for all platforms;
e Availability today for Linux and Windows, with more platforms anticipated in the future;
e Comparatively simple APIs and data exchange protocol;

e Support for major programming and scripting languages and the seamless interaction
between modules written in different languages;

e No need for a separately-compiled interface definition language (IDL); and

e Resource management performed by underlying services (which means, for example, that
there is no exposed object reference counting).

SBW is being developed as part of existing collaborations in the systems biology community
with the following software development groups: BioSpice (Arkin, 2001), DBsolve (Goryanin,
2001; Goryanin et al., 1999), E-CELL (Tomita et al., 1999, 2001), Gepasi (Mendes, 1997,
2001), Jarnac (Sauro and Fell, 1991; Sauro, 2000), ProMoT/DIVA (Ginkel et al., 2000),
StochSim (Bray et al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al.,
2000, 2001). These collaborations have already successfully established SBML, the Systems
Biology Markup Language (SBML; Hucka et al., 2001b), as an important emerging standard
in systems biology.

B 2 A Brief Tour of SBW

The primary goal of SBW is to allow the integration of software components performing a
wide range of tasks common in computational biology, such as simulation, data visualization,
optimization, and bifurcation analysis. SBW is not designed to be in the foreground of either the
user’s or the programmer’s experience, but instead, to allow existing systems biology software
packages to easily and transparently access functionality from each other.

In more specific terms, SBW is a computational resource brokerage system. It allows the
interactive discovery and use of software resources. In the SBW scheme of things, software
resources are independent applications and are called modules. A module instance is a running
application or process. A module can implement one or more services. Services are interfaces
to the resources inside a module and consist of one or more methods (i.e., callable functions).

Broker architectures are relatively common and
are considered to be a well-documented software
pattern (Buschmann et al., 1996). In SBW, the
remote service invocations are implemented us-
ing message passing, another well-known and
proven software technology. Communications
in message-passing systems take place as ex-
changes of structured data bundles—messages—
sent from one software entity to another over
a channel. Some messages may be requests to
perform an action, other messages may be no-
tifications or status reports. Because interac-
tions in a message-passing framework are de-
fined at the level of messages and protocols for
their exchange, it is easier to make the frame-
work neutral with respect to implementation
languages: modules can be written in any lan-
guage, as long as they can send, receive and
process appropriately-structured messages using

Module Written
in Python

SBW Python Interface

Q

& 8

5 &
Module | & 9 | Module
Written s SBW E Written
. Z Broker ol.
inJava | = = inC

3

= &

17

Figure 1: The overall organization of the Systems
Biology Workbench. Gray areas indicate SBW
components (libraries and the broker). To individ-
ual modules, communications appear to be direct
(dotted line), although they actually pass through
the broker.

agreed-upon conventions. Figure 1 illustrates the overall SBW system organization.

From the application programmer’s point of view, it is preferable to isolate the message-passing
details from the application details. We provide two levels of programming interfaces in SBW:
a low-level API consisting of the basic operations involved in sending and receiving messages,
and a high-level API that hides the messaging level and provides ways for a module’s services
to be “hooked into” the messaging framework in an object-oriented fashion. Throughout this
manual, we concentrate on the more convenient high-level API, but both the low- and high-level
APIs are always available in the same SBW Java library. Section 5 describes the low-level API.

2.1 Overview of SBW from a Programmer’s Perspective

The SBW APIs provide the following facilities:

. Dynamic service and module discovery: The SBW Broker keeps track of modules, services
and service categories, and provides facilities for a module to learn about them.

. Remote method invocation: The bread and butter of SBW is enabling one module to in-
voke a service method in another module. If necessary, the SBW Broker will automatically
start an instance of a module whose services are requested.

. Data serialization: Method invocations involve sending messages between modules, with
arguments and data packed into message streams. For some languages such as Java, Perl
and Python, the SBW library provides proxy objects that hide the message-passing, so
that to client programs, remote services appear as local objects whose methods can be
invoked like any other object method.

. Ezception handling: SBW provides facilities for dealing with exceptional conditions.

. Bvent notification: Certain events in SBW, such as the startup or shutdown of an instance
of a module, are announced to all modules upon their occurrence.

. Module, service and method registration: In order for a module to advertise its services
to others, it must first inform the Broker about them. The registration facilities allow a
module to record with the Broker the services that the module provides, the command
that should be used to start up the module on demand, and other information. The SBW
Broker stores this in a disk file, so that the information provided by modules is persistent
between start-up and shutdown of the modules and the Broker.

2.1.1 Service Categories

Each service is described by a unique name, a humanly-readable name, and a service category.
Services in SBW are categorized hierarchically as a tree in which the leaves are services. Each
level in the hierarchy is named and can be uniquely described via a text string very much like
directory pathnames in Unix or Windows.

The purpose of this facility is to support a hierarchy of programming interfaces. Each level
has an associated, documented interface. Descendants inherit or extend the interface of their
parents. Categorizing services in this way allows other applications to find services with known
interfaces without having to know about specific modules. New modules, by complying with
a given interface, can extend the behavior of existing applications without requiring those
applications to be rewritten.

To give an example, one could define a top-level category, “Analysis”, with a service interface
consisting of one method:

void doAnalysis(string SBML)

Then one could have a subcategory of “Analysis” called “Analysis/Simulation”, with a service
interface consisting of two methods:

void doAnalysis(String SBML)
void ReRun()

Service category names can consist of any sequence of non-control characters excluding ‘\n’
and ‘/’ but including space. Service category strings as used in the API are sequences of one
or more service category level names separated by a forward slash (‘/’) character.

2.1.2 Adapting Applications to Use SBW

We strove to create APIs that provide a natural interface in each of the different languages for
which we have implemented libraries so far. By “natural”’, we mean that it uses a style and
features that programmers accustomed to that particular language should find familiar. We
hope that application developers will find it relatively easy to introduce SBW interoperability
into their software. To give some idea of what is involved, here is a summary of the steps a
developer would follow to adapt a particular application for use as a module in SBW:

1. Decide on the services that will be provided by the module to clients.

2. (Optionally) Categorize each service, using as a starting point the existing SBW service
hierarchy.

3. For each service, define its methods along with their parameters and return value(s).
4. If necessary, implement the methods as they are intended to be seen by other modules.

5. Add calls in the application’s main routine to the SBW module registration methods as
described below.

6. Compile the application with the SBW API library (if appropriate for the programming
language in use).

The resulting application will be able to run in three modes: a regular, non-SBW mode; a
registration mode; and a module mode. By convention, the registration mode is invoked by
starting the module with the command-line argument -sbwregister; it tells SBW to contact
the Broker once, register the services declared by the module (if the module’s author so desires),
and exit. The module mode is invoked by starting the module with the command-line argument
-sbwmodule; it allows the module to run, connecting to SBW and making its services (if any)
available to other SBW modules. The non-SBW mode is invoked by not supplying either of
these arguments.

. 3 A Tutorial on Programming with SBW in Java

We describe in this tutorial several programming scenarios that use the SBW Java API. Sec-
tion 4 provides a detailed reference manual for all of the methods and objects used in this
section, plus others that are not discussed in this tutorial.

3.1 Preliminary Note about Data Types

As all programmers know, different programming languages have different definitions for basic
data types. In order to allow an SBW module written in one language to communicate with
another written in a different language, it is necessary in some instances for SBW to define its
own data types. We have tried to minimize this and use each programming language’s natural
types as much as possible. Table 1 shows the mappings for various programming languages
currently supported in SBW.

SBW

Signature Java C++ C Python Delphi

string String std::string char * string string

int int Integer ? SBWInteger it integer

double double Double ? SBWDouble float double

boolean boolean bool SBWBoolean i boolean

byte byte unsigned char unsigned char string byte

array array std: :vector b array array ¢ SBWArray
or array

list java.util.List DataBlockWriter?® SBWDataBlockWriter * list SBWList

DataBlockReader® SBWDataBlockReader *

Table 1: Data types supported in SBW and their corresponding programming language types. The “SBW
Signature” types are those permitted in service method signatures; they are described in Section 4.2.2.
The italicized names array and list represent the natural versions of these data types; i.e., in Java, arrays
are such things as “int[]1”, “bytel[l”, etc. Integer and SBWInteger are to defined to be a 32-bit
signed integer (the same as the primitive int and integer types in the other languages). Double and
SBWDouble are defined to be a double-precision floating-point number in IEEE 754 format (the same as the
primitive double type defined in the other languages). ®SBW symbols in the C+-+ library are defined in
the namespace SystemsBiologyWorkbench. bin the C++ library, std: :vector is used for 1-D arrays and
raw C++ arrays are used for 2-D arrays. °In Python, 1-D and 2-D arrays are implemented using the array
type from the Numerical Python package (Ascher et al., 2001).

3.2 Preliminary Note about Accessing the APls

The SBW Java interface library is packaged in the same familiar form as most other Java
tools: it is a Java JAR archive (Falangan, 1999) of class files that a client application loads
dynamically when it needs it. SBW is provided in two forms: an optimized version (in a file
named SBWCore. jar) and a debugging version (in a file named SBWCore-debug. jar). Both
forms of the SBW Java interface library depend on other third-party open-source libraries that
are distributed with SBW. All of these files are provided with the SBW installation.

To use the SBW library in an application, it is necessary to instruct both the Java compiler
and the Java run-time execution environment about where the necessary files are located. To
avoid getting sidetracked by too many details here, we delay presenting the instructions for
doing this until Section 4.1. In the rest of the present section, we omit discussions of compiling
code in order to concentrate on how to program with SBW.

0O~ O UL W N

3.3 Calling a Known Module

The simplest use of SBW consists of invoking services on a module. The simplest case of
invoking services on a module is when the module identification name and service identification
names are known by the programmer in advance.

We begin with a simple example that involves calling a service named “Trig” on a module named
“edu.caltech.trigonometry”. An actual implementation of this module is described in the next
section (and also available with the SBW source release in the src/tutorials/Java area); for
the moment, let us assume that the interface for service “Trig” consists of two methods:

double sin(double)
double cos(double)

Figure 2 shows the text of a Java program fragment that illustrates making a call to one of
these methods. In this example, the program connects to SBW using the connect method on
class SBW, executes one method on another module, and then disconnects from SBW using the
disconnect method.

Let us assume there is a module identified as “edu.caltech.trigonometry” and that it has a
service named “Trig”. We want to invoke the method sin on this service. The first step is
to access an instance of the module from our program and obtain an object representing it.
This is accomplished using SBW.getModuleInstance. Then, we obtain an object representing
the specific desired service on that module instance, using findServiceByName on the Method

import java.util.*;
import edu.caltech.sbw;

interface Trigonometry
{
double sin(double x) throws SBWException;
double cos(double x) throws SBWException;
}

static public double trigonometry(double x)
{
try
{
SBW.connect () ;
Module module = SBW.getModuleInstance("edu.caltech.trigonometry");
Service service = module.findServiceByName("Trig");
Trigonometry trig = (Trigonometry)service.getServiceObject(Trigonometry.class);
double result = trig.sin(x);
module.shutdown() ;
SBW.disconnect () ;

return result;
}
catch (SBWException e)
{
e.handleWithDialog();
}

return O;

}

Figure 2: Java example of calling a known module (“edu.caltech.trigonometry”) and service (“Trig”).

line 16

line 22

line 17
line 18

object returned from the previous call. The SBW Java interface makes accessing this service
convenient through the getServiceObject method which returns a proxy object for the service
(here assigned to the variable trig). The object permits calling the sin method directly on
the service.

The construction of the proxy merits some additional explanation. The getServiceObject
dynamically constructs a Java Object having the interface given as its argument; the result
needs to be cast to the interface in a manner that will be familiar to Java programmers. Thus,
the only requirement for using proxy objects like this is the availability of a Java interface
definition so that the Java compiler will accept the method calls on the proxy object. If
desired, this interface may define only a subset of the methods on the implementing service
(in other words, the real service may have other methods not listed in the Java interface used
in the call to getServiceObject); however, the methods that are defined should match the
signatures defined on the actual implementation. Note also that although the interface here
has been defined using the Java interface mechanism, the implementation of the service (in the
remote module) does not have to be in Java—the implementing module can be written in any
other language. The interface here only defines how a Java client program sees the interface.

The call to the sin method causes (underneath it all) messages to be sent to, and returned from,
the implementing module. This is a blocking operation—the caller waits for a reply. (Non-
blocking operations can also be implemented, simply by putting the call within a thread.)

The remaining code in Figure 2 on the page before shows the use of try-catch clauses to handle
exceptions that may be thrown by SBW as well as calls on the proxy object. All SBW exceptions
are derived from class SBWException. SBWException has a method, handleWithDialog(),
which displays information on the exception in a modal dialog to the user to facilitate exception
handling. As an alternative, SBWException provides methods to directly access the messages
associated with an exception; these can be used by a client application to do its own display
and handling of exceptions. SBWException is documented in Section 4.7.

As a final note, it worth mentioning that the example of Figure 2 is somewhat contrived, in
that real applications would not call connect () and disconnect() around every invocation of
a service method. Instead, a real-life application would most likely connect to SBW once when
starting and then disconnect at the very end before exiting.

3.4 Implementing a Service

The previous section presented an example of accessing a known service through SBW. In
this section, we describe the implementation of the module “edu.caltech.trigonometry” that
provides the “Trig” service used in that example.

We begin by creating the underlying service functionality. In Java this is straightforward:
we create a class that implements the trigonometry operations sin and cos. The method
signatures (that is, their names, parameters and return types) must match those expected by
the client. Figure 3 on the following page shows the definition of a class that implements the
necessary functionality. Note that this part of the module has no SBW-specific code in it.

So much for the methods sin and cos. Now, how does the module’s main method advertise
this service to SBW, and how must the module’s main be structured?

The implementation of a module centers around SBW’s ModuleImpl class. This class provides a
convenient, high-level interface encapsulating all the operations necessary for defining modules
and services. Figure 4 on the next page shows the main routine for our example module.
The first part of the implementation is the creation of a ModuleImpl object. The form of the
constructor used in this example is a simple one that requires only one argument: a human-
readable display name for the module. The constructor automatically assigns a unique name
to the module based on the package in which the definition is placed (in this case, the unique
name becomes “edu.caltech.trigonometry”).

line 19

line 19

line 20

line 28

line 11

0~ O U WN

00~ O Ui WN

package edu.caltech.trigonometry;
import java.lang.Math;

class Trig
{
public double sin(double x)

{

return Math.sin(x);

}

public double cos(double x)
{
return Math.cos(x);
}
}

Figure 3: Implementation of the functionality behind service “edu.caltech.trigonometry”.

The following line of code in Figure 4 adds the service named “Trig” to the ModuleImpl object:

moduleImp.addService("Trig", "sin and cosine functions",
"trigonometry", Trig.class);

The first argument of addService is a unique name for the service (unique to the module);
the second argument is a human-readable display name for the service; the third is the service
category; and the last is the class that implements the service. The class definition is scanned
by SBW for public methods, and these become the methods offered by the service.

The last step is starting up the module. As mentioned in Section 2.1.2, an SBW-enabled
application can run in three modes: without SBW, in SBW registration mode, and in module
mode. The ModuleImpl class provides a convenience method, run, which takes care of switching
between the registration and module modes at run time. The determination of which mode
to use is made on the basis of a flag passed on the command-line to the application when it
is started up. Note the args array passed as an argument to the run method in Figure 4;

package edu.caltech.trigonometry;
import edu.caltech.sbw;

class TrigApplication

{
public static void main(String[] args)
{
try
{
ModuleImpl moduleImp = new ModuleImpl("Trigonometry");
moduleImp.addService("Trig", "sin and cosine functions",
"trigonometry", Trig.class);
moduleImp.run(args) ;
}
catch (SBWException e)
{
e.handleWithDialog() ;
}
}
}

Figure 4: Module implementation code for “edu.caltech.trigonometry”.

line 13/14

line 15

line 15

this is the array of command-line arguments that was handed to the application’s main. If the
application is started with the command-line flag -sbwregister, the call to ModuleImpl’s run
method registers the module and its services with the SBW Broker and exits; if the application
is started with —sbwmodule, it connects to the Broker, notifies it that the module is providing
services, and returns, letting the module run until it shuts down or SBW is disconnected. If
neither flag is given to the application, run does nothing.

The use of the flags -~sbwregister and -sbwmodule is only a suggested convention. A program-
mer can chose to use other flags (or other techniques) simply by not calling ModuleImpl’s run
method, and instead calling the corresponding methods on ModuleImpl itself. (These methods
are described in Section 4.5.)

3.5 Finding Services in a Given Category

In some applications with GUI interfaces, it can be useful to let users select a service from a
list. An example might be a tool that allows users to create and edit a visual representation
of a computational model, then send the model to a separate simulation and analysis engine.
The choice of simulation/analysis tools could be presented as a list of services available to the
user. At the programming level, the different simulation and analysis services must have some
minimal defined interface to call. They can therefore be categorized. To construct the list of
services to present to the user, the model editing tool first needs to obtain a list of available
services from SBW. Once the user makes a selection, the application then must call one or more
methods on the selected service. This section describes how this can be achieved using SBW.

The complete code is somewhat long because of all the GUI calls required, so we leave it to
Appendix A.3 and here concentrate only on the most salient elements. Figure 5 on the following
page shows the code with only the lines of interest included.

We begin by describing the implementation of GUI components for displaying the list of services.
We can create a list box in Java’s Swing GUI framework using the JList class object, and in
Figure 5 on the next page, the list box is assigned to a variable named (appropriately enough)
list. Next, we create a list of services that will be inserted into the JList pointed to by 1list.
This is a good opportunity to introduce another SBW concept, that of a service descriptor,
represented programmatically by the SBW class ServiceDescriptor. The need for descriptors
that are separate from Service objects stems from the fact that an application (such as our
current example) may need to manipulate information about services that are not yet running.
Service class objects represent services that are running and available for access; by contrast,
ServiceDescriptor objects are used to describe basic aspects of a service such as its name
and category—aspects which do not require the service’s implementing module to be running.

In SBW, an array of service descriptors is obtained by calling SBW.findServices. In our
current example, the array returned by the call to SBW.findServices is used to initialize the
contents of variable 1ist. For purposes of this example, we assume that there exists a service
category called “Analysis”. Setting up list thus looks like this:

ServiceDescriptor[] descriptors = SBW.findServices("Analysis");
list.setListData(descriptors);

Displaying the data in the list requires the use of a Java renderer object. In the code of Figure 5
on the following page, we create a class called AnalysisCellRenderer that implements the Java
ListCellRenderer interface. The important elements of the code are the following:

public Component getListCellRendererComponent(JList list, Object value, int index,
boolean isSelected, boolean hasFocus)
{
String name = ((ServiceDescriptor) value).getDisplayName();
return defaultRenderer.getListCellRendererComponent(list, name, index,
isSelected, cellHasFocus);

10

line 10

line 17
line 18

line 42

0~ O U WN

interface Analysis
{

void doAnalysis(String sbml);
}

public class AnalysisDriverFrame

{
JList list = new JList();

private void jbInit() throws Exception
{
try
{
ServiceDescriptor[] descriptors = SBW.findServices("Analysis");
list.setListData(descriptors);

list.setCellRenderer (new AnalysisCellRenderer());
}

)

void OKButton_mouseClicked(MouseEvent e)
{
if (!list.isSelectionEmpty())
{
String sbml = SBMLEditorPane.getText();

try

{
ServiceDescriptor descriptor = (ServiceDescriptor) list.getSelectedValue();
Service service = descriptor.getServiceInModuleInstance();
Analysis analysis = (Analysis) service.getServiceObject(Analysis.class);
analysis.doAnalysis(sbml);

}

L
}
}

public class AnalysisCellRenderer implements ListCellRenderer
{
private DefaultListCellRenderer defaultRenderer = new DefaultListCellRenderer();

public Component getListCellRendererComponent(JList list, Object value, int index,
boolean isSelected, boolean hasFocus)
{
String name = ((ServiceDescriptor) value).getDisplayName();
return defaultRenderer.getListCellRendererComponent(list, name, index,
isSelected, hasFocus);

Figure 5: Module implementation code for “edu.caltech.trigonometry”.

The getListCellRendererComponent method of our renderer is called by the Java GUI frame-
work. The parameter value is an object (one of our ServiceDescriptor objects) from the
list data in 1ist. We invoke the method getDisplayName on this object to obtain a human-
readable name of the service as a Java String object, and then pass that to the default Java
GUI rendering methods for display.

11

line 49

N O Ut W

Now that we have described the initialization of the list box, we can consider what happens
when the user makes a selection. When the user chooses an item, our code must use the
ServiceDescriptor object returned by the Java GUI calls to invoke a method on the chosen
service. First, we need to extract the item selected from the list after some event such as the
user clicking an “OK” button. In Java Swing, this is easily done using getSelectedValue on
the 1ist object:

ServiceDescriptor descriptor = (ServiceDescriptor) list.getSelectedValue();

After getting hold of the service descriptor, we must ask SBW for an instance of the ser-
vice before we can invoke one of its methods. We can obtain an instance of the module
that implements the service by using the method getServiceInModuleInstance on the given
ServiceDescriptor:

Service service = descriptor.getServiceInModuleInstance();

This method first checks whether the module that implements the requested service needs to
be started up, and starts it if so. It then returns a Service object corresponding to it.

Let us assume that the “Analysis” category of services has a method, doAnalysis, that takes
as an argument a representation of the model to be analyzed. We define an interface class for
the Analysis category, and use this in an SBW call to create a proxy object for the service:

Analysis analysis = (Analysis) service.getServiceObject(Analysis.class);

Finally, we can invoke the doAnalysis method on the “Analysis” service.

3.6 Calling a Known Service Having a Complex Return Value

The examples above involved simple parameters and return values to and from service methods.
However, SBW supports more elaborate data structures than those used so far. In this section,
we present an example of calling a service method having a complex return value.

In order to allow method parameters and return values to be described in a language-
independent manner, SBW uses a simple notation for method signatures. The notation is
fully defined in Section 4.2.2. For our purposes in this section, we explain the meanings of just
those parts of the notation we actually need here.

The following is a signature definition for a method called 1oadSBMLModel that accepts a single
string and returns an array of lists. Each item in the array of lists consists of a string and a
double floating-point value.

{string, double}[] loadSBMLModel(string sbml)

The data type used in Java to represent a list is the java.util.List class. Let us assume that
the method above is defined on an interface called Simulator, as shown in Figure 6.

import java.util.List;
import edu.caltech.sbw;

interface Simulator
{

List[] loadSBMLModel (String sbml) throws SBWException;
}

Figure 6: Definition of the Simulator interface.
Let us also assume that there already exists in our program an instance of a Service object

that implements this interface, assigned to a variable named service. As shown before, we
can ask SBW to create a proxy object for this interface as follows:

12

lines 2440

line 28

lines 2-5

line 35

Simulator simulator = (Simulator) service.getServiceObject(Simulator.class);

Given this, we can call method loadSBMLModel on the proxy object and get the array of

lists it returns. Obtaining the individual elements of each list is a simple matter of calling

some standard Java list element extraction methods. To illustrate this, Figure 7 presents a

code fragment showing one approach to iterating through the list returned by loadSBMLModel

and extracting the two elements in each list. In this example, the result of the call to
simulator.loadSBMLModel (sbml) is stored in the variable parameters. A for loop then line 5
iterates over each element in the parameters array, using the list operator get to extract the ilines 10, 11
two components of the lists.

String sbml;
// Assume that something assigns a value to variable sbml.
List[] parameters = simulator.loadSBMLModel(sbml);

for (int i = 0; i < parameters.length; i++)

0~ O Uk WN

{
List parameter = parameters[i];
String name = (String) parameter.get(0);
double value = (Double) parameter.get(1).doubleValue();
// Do something with parameter data here...
}

Figure 7: Example of iterating through a list of return values.

13

SBW Java API Reference

This section is a reference for the different components of the high-level SBW Java API. The
classes in the API are summarized in Table 2 and described in detail in the paragraphs that

follow.

As mentioned elsewhere in this manual, it is also possible to interact with SBW using a lower-
level API. This API bypasses most of the classes and methods discussed in this section and
instead involves exchanging messages directly between modules. It is conceptually simple, but
it is more error-prone and tedious to program, hence the development of the high-level API
presented here. Nonetheless, the low-level API may be useful for some situations. It is described

in Section 5.

Class

Role

Section

Starting
Page

Module

ModuleDescriptor

ModuleImpl

SBW

SBWException
SBWListener

Service

ServiceDescriptor

ServiceMethod

Signature

SignatureElement

SignatureType

Represents a running module instance and
provides access to basic information about
the module as well as ways of listing and
searching the module’s services

Describes a module that may or may not be
running; the information corresponds to the
static data recorded in the SBW Broker’s reg-
istry

Used for defining a module, including its ser-
vices; only service providers need to interact
with this class

Provides static methods for general SBW
operations such as connecting to SBW and
searching for services and modules

The base class of exceptions thrown by SBW
methods and client-side service proxies

Used for defining call-backs for SBW notifica-
tion of certain events such as module startups

Represents a service and provides access to
the service methods implemented by a mod-
ule instance

Describes basic information about a service,
such as its name and category; also provides
a way to get a Service object

Describes a method on a service and provides
access to the method signature

Represents a method signature in a struc-
tured form and allows translation to and from
text string form

A component of a method signature consist-
ing of a data type and optionally a variable
name

Represents a data type in a method signature

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

22

23

24

28

32

34

35

37

38

39

40

41

Table 2: The classes defined by the SBW Java API, presented in alphabetical order.

14

4.1 Programming with the SBW Java API Library

The SBW distribution and the code examples in this manual are designed for use with Java
Development Kit (JDK) version 1.3 (Sun Microsystems, 2001). For the sake of this discussion,
let us assume that when you run the commands java, javac and jar in a shell window on your
computer (under both Linux and Windows), the versions of these commands that are executed
are from JDK 1.3.

In what follows, we use the term SBW_HOME to stand for the path to the SBW installation
directory on your computer. If you installed SBW using the self-extracting installer, this
directory is where you told the installer to place SBW. If you configured and built the system
from the source files, this will be the directory supplied as the --prefix argument to the
configure program supplied with SBW. Throughout the discussions below, you will have to
replace the text SBW_HOME in the commands below with the actual path on your system.

Figure 8 summarizes the directory structure of the SBW installation, with SBW_HOME being the
top level. All of the SBW library files are located in the 1ib subdirectory.

SBW HOMVE

— bin

— docs

— i ncl ude

— lib
SBWCor e. j ar
SBWCor e- debug. j ar

‘— nodul es

Figure 8: The SBW installation root directory structure and the location of critical JAR files such as
SBWCore. jar. “SBW_HOME" is not meant literally as a pathname, but rather signifies the root of the directory
where SBW is installed on your system. Its exact value is platform- and installation-specific.

4.1.1 Compiling Java Applications with SBW

As mentioned in Section 3.2, there are two forms of the SBW Java interface library: an
optimized version (in a file named SBWCore.jar) and a debugging version (in a file named
SBWCore-debug. jar). To simplify the following discussions, we refer only to SBWCore. jar, but
SBWCore-debug. jar could just as well be substituted in its place.

As is well-known to Java programmers, a program’s Java source files must be placed in a
directory hierarchy that matches the package structures. For example, if you were developing a
package named edu.caltech.simulator, the Java source files would need to be placed in the
subdirectory edu/caltech/simulator. In the following discussions, we use the italicized word
package to stand for an arbitrary package directory hierarchy.

To compile a set of Java source files for use with SBW, you need to execute a command of the
following form (all on one line) at the top of the hierarchical package directory:

javac -classpath SBW_HOME/lib/SBWCore.jar:. package/*.java

The SBWCore.jar library file incorporates within it a few third-party open-source libraries
needed for its operation. For portability, SBWCore. jar does not have dependencies on external
packages—it is a standalone library, analogous to a statically-linked binary in other program-
ming languages.

15

4.1.2 Running SBW-Enabled Java Applications

The simplest way to run your application, once your Java source files are compiled, is to use a
command such as the following from the top of the package directory:

java -classpath SBW_HOME/1ib/SBWCore.jar:. main

Here, main refers to the class that contains the entry point to your application (that is,
the class containing the main routine in your program). For example, this might be a
path such as edu/caltech/simulator/Main, if the main routine were located in the file
edu/caltech/simulator/Main. java.

4.1.3 Debugging SBW-Enabled Java Applications

When developing SBW applications, it can be extremely useful to know the dialogue that takes
place between your application and the rest of SBW, particularly the SBW Broker. The SBW
debugging library SBWCore-debug. jar is provided exactly for this reason. To use it, simply
run your application using SBWCore-debug. jar instead of SBWCore.jar. For example, from
the top of your package directory, run a command of the form

java -classpath SBW_HOME/1ib/SBWCore-debug.jar:. main

The result will be that all SBW calls produce copious debugging output on the standard output
stream. Each line begins with a time stamp, the name of the thread involved, the SBW class,
method, and line number, followed by a debugging message. Figure 9 on the following page
provides an illustrative sample from the SBW Browser module.

4.1.4 Creating Standalone Files for a Java Application

The command given above for running an application is simple and useful during development.
However, it is cumbersome, and moreover the files are located in a specific directory that have
to be written out as a complete path every time the program is run.

Thankfully, it is possible to create standalone Java . jar files that can be moved anywhere on
a system and executed with a simple run command. (On MS Windows platforms, the resulting
.jar file can even be executed by simply double-clicking its name in the Windows file browser.)
To simplify the construction of these standalone Java files, we include as part of SBW a program
called sbw-make-jar. It is located in the bin subdirectory of SBW_HOME.

To use sbw-make-jar, first move to the top of the package directory for your application.
Then, execute a command such as the following:

SBW_HOME /bin/sbw-make-jar name.jar modulemain package/*.class

The command must be given three mandatory arguments: name. jar is the name that you wish
to give to your application’s . jar file; modulemain is the class that contains the entry point to
your application (i.e., the class containing the main routine); and package /*.class is the set
of compiled Java .class files for your application. The result of running this command will be
a file named name. jar in the current directory.

Here is a complete example of using sbw-make-jar. Let us suppose that we have a module
whose main class is edu. caltech.test.Main, and we want the . jar file to be named test. jar.
If our compiled class files are all located in a subdirectory edu/caltech/test, then:

SBW_HOME /bin/sbw-make-jar test.jar edu.caltech.test.Main edu/caltech/test/*.class

Once you have built test.jar in this way, you can run your application by simply executing
the following command:

java —jar test.jar

16

© OO Uk WN

java -jar Browser-debug.jar -1
[0.046 main (trace) SBWModuleRPC.connectToBroker:294] Attempting to connect to Broker
[0.075 main (trace) RuntimeProperties.reload:172] Read runtime properties from
/home/mhucka/.sbw/runtime/erato.cds.caltech.edu/run.properties
[0.089 main (trace) RuntimeProperties.reload:172] Read runtime properties from
/home/mhucka/.sbw/runtime/erato.cds.caltech.edu/run.properties
[0.099 main (trace) SBWModuleRPC.connectToBroker:308] Found sbw.module.port in SBW properties fil¢
[0.117 main (trace) SessionKey.loadKey:79] Loading session key from
’ /home/mhucka/.sbw/runtime/erato.cds.caltech.edu/key’
[0.128 main (trace) SBWModuleRPC.connectSocketToBroker:371] Attempting to connect socket to
localhost:10002
[0.131 main (trace) SBWModuleRPC.connectMessageStreams:409] Attempting to connect anonymously
[0.165 main (trace) SBWModuleRPC.connectMessageStreams:433] Successfully shook hands with Broker
[0.171 receiver-thread (trace) SBWModuleRPC.runReceiverThread:457] Receiver thread started
[0.172 main (trace) SBW.getBrokerService:709] Obtaining instance of Broker interface.
[0.175 main (trace) SBW.getServiceNamesFromModule:751] Querying module -1 about its services
[0.195 main (trace) SBWRPC.transmit:397] Transmitting message (length = 26) to module -1
[0.196 receiver-thread (trace) SBWRPC.receive:287] Module 5 receiving ’reply’ msg
[0.198 main (trace) SBWRPC.call:206] Call sent; waiting for reply from module -1
[0.199 main (trace) RPCOutCall.waitForReply:168] Processing reply event
[0.199 main (trace) RPCOutCall.waitForReply:172] Received NORMAL_REPLY_EVENT
[0.209 main (trace) SBW.getSignatureStringsFromModule:796] Querying module -1 about methods for
service 0
[0.210 main (trace) SBWRPC.transmit:397] Transmitting message (length = 31) to module -1
[0.215 receiver-thread (trace) SBWRPC.receive:287] Module 5 receiving ’reply’ msg
[0.216 main (trace) SBWRPC.call:206] Call sent; waiting for reply from module -1
[0.216 main (trace) RPCOutCall.waitForReply:168] Processing reply event
[0.217 main (trace) RPCOutCall.waitForReply:172] Received NORMAL_REPLY_EVENT
[0.323 main (trace) ServiceInvocationHandler.invoke:122] Invoking method 2 on service 0 of module
-1
[0.333 main (trace) SBWRPC.transmit:397] Transmitting message (length = 30) to module -1
[0.345 receiver-thread (trace) SBWRPC.receive:287] Module 5 receiving ’reply’ msg
[0.356 main (trace) SBWRPC.call:206] Call sent; waiting for reply from module -1
[0.356 main (trace) RPCOutCall.waitForReply:168] Processing reply event
[0.369 main (trace) RPCOutCall.waitForReply:172] Received NORMAL_REPLY_EVENT
The following modules are registered with SBW:

edu.caltech.NOM ("Network Object Model")

edu.caltech.NOMClipboard ("Clipboard Network Object Model")

edu.caltech.MatlabTranslator ("Matlab Translator")

edu.caltech.sbw.tests.testserver ("TestServer")

BROKER ("SBW Broker")

simple ("server C implementation")
[0.412 main (trace) SBWModuleRPC.disconnect:213] Disconnecting from broker
[0.414 main (trace) SBWRPC.transmit:397] Transmitting message (length = 4) to module -1
[0.501 main (trace) SBWModuleRPC.disconnectSockets:508] Closing client-side socket connection
[0.502 main (trace) SBWRPC.cleanupPendingCalls:654] Stopping all incoming and outgoing message
threads

Figure 9: Example output from using the debugging library SBWCore-debug. jar.

You can move test. jar to another directory and still be able to run it with java -jar. (And,
as mentioned above, under MS Windows, you can double-click on test.jar in a file listing
window and Windows will start the Java run-time environment on it automatically.)

The program sbw-make-jar accepts certain optional command-line switches, one of the most
important being -d, which tells it to use the debugging version of the SBW library (i.e.,
SBWCore-debug. jar). You will probably wish to use this option whenever you are testing
your application with SBW. A detailed explanation of the program sbw-make-jar and the
options it accepts is provided in Appendix B.

Finally, note that you could simplify the use of this command further by adding the directory
SBW_HOME /bin to your shell’s command search path. This would obviate the need to type the
full path to sbw-make-jar every time.

17

4.2 General Concepts in the SBW API

Before getting into the list of SBW classes, we discuss some general points about the Systems
Biology Workbench framework and its implementation.

4.2.1 Relationships between the Different Elements in the SBW API

When dealing with the different objects listed in Table 2, it is useful to keep in mind the
distinction between a local representation of a module, service or service method, and its
implementation in an actual module instance.

The objects of class Module and Service are local representations or proxies for other, concrete
objects that exist elsewhere in the SBW system. Actions taken on the proxy objects themselves,
such as destroying a Service object, may have no effect on any real module instance. Figure 10
illustrates how the proxies are related to the objects they represent.

Wlociis NEknce & process Wioole NSlonce B process
mpEmeniaions miplermenkaions
Handier for Sendce @ method A " |, Hondier for Sendce X method ¥
Hancdier for Senice @ method B Hordler for Senice ¥ rmethod B

Prondes
Module mslance 8
Senice X

Priooies

Wielhod Y

NModue nstance C
Sarvice X1
Wialnod Y1

Welhod ¥ 2

Services)2
Wialhod Y3

Figure 10: Relationships between proxy objects in a client and the corresponding objects in a module
instance.

SBW generally avoids caching all but the most basic information, to avoid problems that might
arise if a remote module changed some part of its definition and the cached information fell out
of date. However, some information is cached for efficiency. The ServiceMethod.getName ()
call, for example, does not actually contact the remote module every time. Other methods do
involve communicating with the remote module, as for example, getting a list of its services. As
will become obvious in the sections that follow, any method that may involve communicating
with a remote module is declared as throwing an exception derived from class SBWException.

4.2.2 Method Signatures

SBW uses a textual notation for describing method names, their parameters and return values.
A description of a method in this notation is called a method signature string. The syntax of
method signatures is shown in Figure 11 on the following page.

18

Letter = fa’. L 2?0 L L 2

Digit = 07,9

Space = C A\t | D)+

SName := ‘_’% (Letter | Digit) (Letter | Digit | ‘_’)*

Type := ‘int’ | ‘double’ | ‘string’ | ‘boolean’ | ‘byte’ | ArrayType | ListType
ArrayType := Type Space? ‘[]°

ListType := ‘{’ Space? ArglList Space? ‘}’

Arglist := (Type [Space SName] (Space? ‘,’ Space? Type [Space SName])*)7
ReturnType ::= ‘void’ | Type

VarArgList ::= (Space? ArglList [Space? ¢,’ Space? ¢...’] Space?) | Space? ‘...’ Space?
Signature ::= ReturnType Space SName Space? ‘(’ VarArgList ¢)’

Figure 11: Permissible syntax of method signatures, defined using the version of EBNF notation (Extended
Backus-Naur Form) used in the XML specification (Bray et al., 1998). The meta symbols (" and ')’ group
the items they enclose, '[' and ']’ signify that the enclosed content is optional, '*' means “zero or more
times”, and '+’ means “one or more times”.

In Figure 11, the Signature element describes the signature of one method. The Type enu-
meration refers to the different possible data types in an argument or the method return value.
Table 1 shows the correspondence between the values of Type shown here and actual program-
ming language data types. The character sequence ‘...’ is used in argument lists to indicate
that the remainder of the arguments are variable (roughly equivalent to varargs in the C pro-
gramming language). The ListType element indicates a list; it may be left empty to indicate
a list whose contents are unspecified.

The following are some examples of method signatures. The following describes a method that
takes a double parameter x as a parameter and returns a double value:

double f(double x)

The following is a method that returns an integer given a one dimensional array of integers:

int f(int[])

The following describes a method that takes a single string as argument and returns a list whose
elements are a string and a double. This also demonstrates that the SBW method signature
notation permits the inclusion of descriptive names such as name and value, to make signatures
easier for humans to discuss.

{string name, double valuel} f(int myindex)

The variable names are optional annotations and are ignored for purposes of comparing signa-
tures; the signature above is functionally equivalent to the following one:

{string, double} f(string)

The following is a method that returns an array of lists. The method takes no arguments, and
the content of the returned lists is undefined:

{300 £0O

As a special feature, SBW takes an empty list specifier (i.e., {}) as a wild-card that matches
any other list in another signature. Thus, the lists {} and (for example) {x, int y} are equal
as far as signature parsing is concerned.

Methods can also be declared as returning no value, using the type void:

void f(byte x, int[] y)

Finally, here is a method that takes a variable number of arguments but returns no value:

void £(...)

19

4.2.3 On Naming Modules, Services and Methods

Module Names. Each module has two names: a unique module identification name, and a name
for display. Module identification names are used by SBW for identifying modules running in a
session. They are compared by SBW on a case-sensitive basis. A module’s identification name
should be chosen so that it is unlikely to be equal to any other module identification name
running on a particular computer. To achieve this, we suggest the following convention: use
the reverse domain name, followed by a ‘.’; followed by the module name, all in lower case.
The reverse domain name is simply the reverse of an Internet domain name string affiliated
with the module developer. (For the SBW team at Caltech, this is typically “edu.caltech”.)

An example of a module identification name following this convention is “edu.caltech.gibson”.

This scheme for module identification names is voluntary. The API will still work with other
naming schemes. The objective is simply to make module names likely to be unique to one
host (or more specifically, to one running instance of the SBW Broker).

Service Names. Each service has two names: a unique service identification name, and a name
for display. A service identification name must be unique to a given module when compared in
a case-sensitive manner. Service identification names must follow the SName syntax as defined
in Section 4.2.2, and by convention start with a capital letter.

Service display names are intended for use in user menus and other similar situations. They
should be chosen to be fairly short and descriptive, but at the same time, fairly unique. Names
that are too general, such as “Simulator”, are usually not good choices.

Version numbers should not be included in service names (i.e., do not use a string such as
“Stochastic Simulator 1.0”). Information about versions and similar attributes is best placed
elsewhere such as the module’s help string (see Section 4.5).

Method Names. Method names must follow the SName syntax defined in Figure 11 on the
preceding page. By convention, they should start with a lower case letter. Method names are
not compared outside of the context of method signatures.

Method signatures are compared using the same scheme as in programming languages such as
C++ and Java. This means, for example, that a service may define more than one method
with the same name, as long as the total signatures for the methods are different. Methods
cannot differ solely on the basis of different return values (again, just as in Java and other
programming languages).

4.2.4 Module Management Types

Depending on the kind of services a module implements and the style of use intended, it may
be more suitable to have multiple copies (instances) of a module running, or to have only one
instance running. Modules that do not keep state information are often best implemented as
having only one copy running in an SBW system. For example, a module that performs data
conversion operations could run as a unique instance in an SBW system, avoiding the resource
usage that would result if a fresh copy were started every time that a client module requested
its services.

SBW allows a module developer to designate the type of management that SBW should assume
for a module. In the Java API, this is indicated by a flag to the constructors for the ModuleImpl
class (see Section 4.5). The possible management types are:

e ModuleImpl.UNIQUE: Indicates that only one instance of this module should be started up
by SBW, and that it should be shared among all requests for the services it implements.

e ModuleImpl.SELF_MANAGED: Indicates that multiple copies of the module may run and
that the module manages itself.

20

4.2.5 Propagating Exceptions in SBW

Exceptions that occur in a module during the execution of a service method are propagated
back by SBW to the module that invoked the service. If the exception was thrown deliberately
by the module, for example to indicate that the caller has made a mistake in its invocation, the
caller will receive an exception of class SBWApplicationException. The latter is the only kind
of SBW exception that a module can create. Otherwise, if the exception involves a problem in
SBW or incorrect use of SBW, the caller will receive an instance of an SBW exception specific to
the problem. Section 4.7 discusses SBW exceptions in more detail and lists the kinds possible.

4.2.6 Distributed Computing with SBW

SBW supports the ability to run modules on multiple computers. It does this by starting an
SBW Broker on each remote computer involved in response to certain forms of invocations of
SBW.getModuleInstance (described in Section 4.6). At the time of this writing, SBW uses the
Secure Shell (SSH; Barrett and Silverman, 2001) to start remote Brokers and provide a secure
communications channel between Brokers running on separate computers.

In order to use this facility, you must set up SSH for password-free operation between the
computers involved. Appendix C describes how to do this.

Once SSH is set up in this manner, remote SBW operations are transparent: modules commu-
nicate with each other in exactly the same way as when running on the same host computer.
The Brokers on each host take care of routing messages to their proper destinations.

21

4.3 Class: Module

The Module class represents an instance of a module. A Module class object stands for an
actual module instance, meaning the corresponding application, that is running on the user’s
computer or perhaps another computer. Having a reference to a Module object in a program
implies that the SBW Broker has started up at least one instance of the corresponding real
module. (This is in contrast to having an instance of a ModuleDescriptor object, described in
the next section; a ModuleDescriptor describes a module but does not imply that an instance
of the module is necessarily running.)

ModuleDescriptor getDescriptor()

throws SBWCommunicationException

Returns a ModuleDescriptor object (Section 4.4) that describes the module. The de-
scriptor can be used to obtain the module’s display name, management type, etc.

A Module object contains zero or more Service objects which represent the services imple-
mented by the module. These services can be listed or searched by name and category using
the three methods getServices, findServiceByCategory and findServiceByName.

Service[] getServices()
throws SBWCommunicationException

Returns an array of Service objects (cf. Section 4.9) representing the services imple-
mented by this module.

Service findServiceByName(String serviceName)
throws SBWCommunicationException

Returns a Service object (Section 4.9) representing the service with the given name
implemented by this module instance. Returns null if such a service doesn’t exist on the
module. The name matching performed is case-sensitive and exact, with the modifica-
tion that any leading and trailing whitespace in serviceName are first removed before
attempting the match.

Service[] findServicesByCategory(String serviceCategory)
throws SBWCommunicationException

Returns an array of Service objects (Section 4.9) corresponding to all the services in
the given category implemented by this module instance. Returns an empty array if
there is no service with a category that matches the string serviceCategory. The
name matching performed is case-sensitive and exact, with the modification that any
leading and trailing whitespace in serviceCategory are first removed before attempting
the match.

void shutdown()
throws SBWCommunicationException

Tells this module instance to shut down.

22

4.4 Class: ModuleDescriptor

A module descriptor describes a module. It embodies the static data recorded by the SBW
Broker in the module registry (see Section 2.1). The corresponding real module instance may
or may not be running.

It may seem confusing at first that there may be no running module instance corresponding
to a module descriptor returned by SBW. However, the utility of this becomes clear when
one considers the need to list all modules known by the system. SBW provides methods,
such as SBW.getModuleDescriptors, that return module descriptors for all modules known by
the Broker. It would be inefficient, and in some cases downright impractical, if every query
for a module descriptor resulted in a module instance being started by SBW. Thus, module
descriptors are decoupled from the running state of a module.

Module descriptors are useful for finding out a module’s basic characteristics, such as its name,
without necessarily starting up an instance of the module.

String getName()

Returns the unique identification of the module. This name typically follows a notational
convention such as that outlined in Section 4.2.3; for example, a module’s unique name
might be “edu.caltech.trigonometry”.

String getDisplayName()

Returns the display name of the module. This is suitable for showing to users in a menu
or list. Although there is no fixed limit on the length of display names, they should be
kept short.

String getCommandLine()

Returns the command line used to start up this module. Depending on how the module
is implemented, the command line may have been constructed automatically by SBW
or it may have been explicitly supplied by the programmer.

int getManagementType()

Returns an integer indicating the management type of the module (Section 4.2.4).
The management type indicates how the lifetime of the module is managed
by SBW. The value returned is one of the following: ModuleImpl.UNIQUE or
ModuleImpl.SELF_MANAGED.

String getHelp()

Returns a help string for the module. This is an optional description of the module
provided by the module’s author(s). It is informational only and not actually required
in the definition of a module.

ServiceDescriptor[] getServiceDescriptors()
throws SBWCommunicationException

This method returns ServiceDescriptor objects for all of the services implemented by
the corresponding module.

23

4.5 Class: ModuleImpl

The ModuleImpl class is used to define the implementation of a module. Its constructor defines
various basic aspects such as the module’s name, and the addService method described below
allows the definition of services associated with the module.

In addition to services, all module definitions have five pieces of information associated with
them: (1) a unique name, (2) a display name, (3) a management type, (4) a class to use as the
main class that will be invoked to start up the module, and (5) a help or documentation string.
There are several versions of the constructor for ModuleImpl, providing increasingly more con-
trol over the definition of the module. The simpler forms derive some of their information
dynamically from the Java stack trace at the time the method is called.

Modulelmpl(String displayName)
throws SBWModuleDefinitionException

Defines a module whose display name is displayName and whose remaining parameters
are set to default values as follows:

e The module’s unique name is determined from the package in which this construc-
tor is called; for example, if the package name edu.caltech.trigonometry, the
module’s unique name is assigned to be “edu.caltech.trigonometry”.

e The module’s management type is set to ModuleImpl.SELF_MANAGED.

e The module’s main class is set to be the class that invoked this constructor. This
is determined by rummaging through the Java stack at run-time.

e The module’s help string is set to the empty string.

The other constructors provide ways of explicitly setting the various parameters.

Modulelmpl(String uniqueName, String displayName, int type)

throws SBWModuleDefinitionException

Defines a module with a unique name given by uniqueName, a display name given by
displayName, and a management type given by type. The module’s main class is set to
be the class that invoked this constructor, and the help string is set to the empty string.
The value of the parameter type must be one of the predefined constants
ModuleImpl.UNIQUE or ModuleImpl.SELF_MANAGED. (See Section 4.2.4 on page 20 for
information about the management types.)

Modulelmpl(String uniqueName, String displayName, int type, Class moduleMainClass)
throws SBWModuleDefinitionException

Defines a module with a unique name given by uniqueName, a display name given
by displayName, a management type given by type, and a main class given by
moduleMainClass. The module’s help string is set to the empty string.

Modulelmpl(String uniqueName, String displayName, int type,
Class moduleMainClass, String helpString)
throws SBWModuleDefinitionException

Defines a module with a unique name given by uniqueName, a display name given by
displayName, a management type given by type, a main class given by the Java class
in moduleMainClass, and a help string given by helpString.

All of the constructors above use the module’s main class to create a default command line for

24

starting up the module. This command line is used by the SBW Broker. The default has the
following form:

/path/to/java -classpath classpath ModuleMainClass -sbwmodule

where the value of classpath is determined from the path to the SBW home directory, and the
path to java is the path to the java executable that was used to start this module. This works
for most modules (including modules packaged as JAR files using the sbw-make-jar utility),
but in some situations it may be important to have direct control over the command line used
by the SBW Broker. This is the purpose of the following method.

void setCommandLine(String commandLine)

Sets a specific command line for starting up this module. The default command for
starting up the module is based on the main class given to the constructor method (see
above). The command supplied must include the path to the java executable and the
-sbwmodule argument. It should contain at least the following components:

/path/to/java -classpath classpath ModuleMainClass -sbwmodule

where ModuleMainClass is the class in which the main method for this module is located.
Note that no verification is performed on the validity of the given command line. Such
verification is very difficult to do (and in the most general case would be tantamount to
solving the Turing halting problem.) SBW and client modules will not learn whether
the given command line correctly starts up the module until the next time that SBW
attempts to run it.

In the Java API for SBW, a single object is used to represent all of the methods of a service.
The association of a service with its definition can be done using either an object or a Java
interface given to one of the methods below. SBW inspects the object or interface given and
defines the service as consisting of all the public methods on the object or interface.

void addService(String uniqueName, String displayName, String category,
Class implementationClass, String helpString)
throws SBWIncorrectCategorySyntaxException, SBWModuleDefinitionException

Adds a service to the list of services provided by this module in the module registry. This
method is normally called from a module in registration mode. Parameter uniqueName is
a unique string that identifies the service; parameter displayName is a human-readable
name, for such uses as displaying in a menu; parameter category is the category into
which the service belongs; and implementationClass is the class of the object that
implements the service. The argument helpString can be used to provide a string that
summarizes the purpose of the service; this help string is retrievable by other modules
through the SBW Broker.

If the service is already defined on this module, it is redefined. Equality is determined
on the basis of a case-sensitive exact match against uniqueName.

25

void addService(String uniqueName, String displayName, String category,

Object implementationObject, String helpString)
throws SBWIncorrectCategorySyntaxException, SBWModuleDefinitionException
Adds a service to the list of services provided by this module in the module registry. This
method is normally called from a module in registration mode. Parameter uniqueName is
a unique string that identifies the service; parameter displayName is a human-readable
name, for such uses as displaying in a menu; parameter category is the category into
which the service belongs; and implementationObject is an instance of the object that
implements the service. (Note the distinction in this argument between this method and
the previous one—here it is an object, whereas the method above requires a class.) The
argument helpString can be used to provide a string that summarizes the purpose of
the service; this help string is retrievable by other modules through the SBW Broker.
If the service is already defined on this module, it is redefined. Equality is determined
on the basis of a case-sensitive exact match against uniqueName.

void addService(String uniqueName, String displayName, String category,

Class implementationClass)
throws SBWiIncorrectCategorySyntaxException, SBWModuleDefinitionException
Adds a service to the list of services provided by this module in the module registry. This
method is normally called from a module in registration mode. Parameter uniqueName is
a unique string that identifies the service; parameter displayName is a human-readable
name, for such uses as displaying in a menu; parameter category is the category into
which the service belongs; and implementationClass is the class of the object that
implements the service. The help string for the service is set to the empty string.
If the service is already defined on this module, it is redefined. Equality is determined
on the basis of a case-sensitive exact match against uniqueName.

void addService(String uniqueName, String displayName, String category,

Object implementationObject)
throws SBWIncorrectCategorySyntaxException, SBWModuleDefinitionException
Adds a service to the list of services provided by this module in the module registry. This
method is normally called from a module in registration mode. Parameter uniqueName is
a unique string that identifies the service; parameter displayName is a human-readable
name, for such uses as displaying in a menu; parameter category is the category into
which the service belongs; and implementationObject is an instance of the object that
implements the service. (Note the distinction in this argument between this method and
the previous one—here it is an object, whereas the method above requires a class.) The
help string for the service is set to the empty string.
If the service is already defined on this module, it is redefined. Equality is determined
on the basis of a case-sensitive exact match against uniqueName.

Note that simply creating a ModuleImpl object with one of the constructors above does not actu-
ally define the module to the SBW Broker. It is not until either of the methods registerModule
or enableModuleServices are called that SBW contacts the Broker.

void registerModule()
throws SBWModuleDefinitionException, SBWCommunicationException

Connects to the SBW Broker and sends the registration information for this module and
its defined services, then returns. Exceptions may be thrown if the Broker determines
that there is something wrong with the module definition, or if there is a problem
communicating with the Broker.

26

void enableModuleServices()
throws SBWCommunicationException

Whereas the registerModule method registers the module with the SBW Broker and

returns, this method notifies the Broker that the module is now operational and able to
handle calls for its services.

To simplify the task of implementating simpler modules, ModuleImpl includes the following
method that handles, in a generic fashion, the task of invoking either registerModule or
enableModuleServices.

void run(String[] args)

throws SBWModuleDefinitionException, SBWCommunicationException

Convenience function for performing the tasks required for handling the -sbwregister
and -sbwmodule options to a module. This method must be passed the array of
command-line arguments passed to the application. This then checks for the presence
of -sbwregister and -sbwmodule, and acts as follows:

1. If the flag -sbwregister is found first in the array of command-line arguments
given to the program, this method invokes the registerModule method followed
by Java’s System.exit (0) call.

2. If the flag —sbwmodule is found first in the array of command-line arguments, this
method invokes enableModuleServices and returns.

The calling routine should perform whatever tasks it would after enabling module ser-
vices. Most modules will not need to perform anything else and should simply return.
The exceptions thrown by this method are simply propagated from the calls to
registerModule and enableModuleServices.

27

4.6 Class: SBW

The SBW class provides methods for various fundamental operations. All of the public methods
on this class are static.

static void connect()

throw SBWBrokerStartException, SBWCommunicationException

Connect to SBW on the local computer as a client. The connection is anonymous.
Other modules querying the Broker about which modules are connected to SBW will be
informed that a module is connected, but without a name or other information.
Connections made using this call are suitable when a module will not provide any ser-
vices. If a module intends to provide services to other modules, the connection should
be performed implicitly using the methods on the class ModuleImpl (see Section 4.5).
A client must connect to SBW before performing other operations such as querying the
system for services. (See the example in Figure 2 on page 7 for an illustration of the use
of this method.)

A client can only be connected to one SBW Broker at a time; attempting to call
connect () twice (without calling disconnect() in the interim) will result in an ex-
ception. Connection attempts that end in failure (e.g., due to a network interruption)
will also result in an exception.

static void connect(String hostNameOrAddress)

throw SBWBrokerStartException, SBWCommunicationException

Deprecated method. The introduction of proper networked distributed operation in
SBW wersion 1.0 makes this method obsolete. Programs should always connect
to their local Broker using connect() and connect multiple Brokers together using
link (hostNameOrAddress).

Connects (as a client) to the SBW Broker running on the computer identified by the host
name or [P address in parameter hostNameOrAddress. The connection is anonymous.
Other modules querying the Broker about which modules are connected to SBW will be
informed that a module is connected, but without a name or other information.
Connections made using this call are suitable when a module will not provide any ser-
vices. If a module intends to provide services to other modules, the connection should
be performed using the methods on the class ModuleImpl (see Section 4.5).

This is a variation on the plain connect () method described above. The same exception
conditions apply.

static void disconnect()

Notifies SBW that this application will no longer be providing or consuming services.
Invoking this method will first send a notification message to the Broker, then close the
network socket and terminate the thread handling message processing.

A client can only be connected to one SBW Broker at a time; therefore, unlike the two
versions of the connect method, there is no variant of disconnect that takes a host
name or address as argument.

28

static void link(String hostNameOrAddress)
throw SBWBrokerStartException, SBWCommunicationException

Tells the local SBW Broker to connect to another SBW Broker running on a remote
computer, starting the remote Broker first if necessary. The remote host is identified by
the host name or IP address in hostNameOrAddress.

It should not normally be necessary to call this method when an application simply
wants to start modules on remote hosts. The SBW.getModuleInstance() call described
below will start remote Brokers and modules if the given module name has a specific
form.

The following method provide ways of discovering services and service categories.

static String[] getServiceCategories(String parentCategory)
throws SBWCommunicationException, SBWIncorrectCategorySyntaxException

Returns an array of strings listing all of the immediate subcategories of the given category
parentCategory. An empty string as the value of parentCategory stands for the root

of the hierarchy tree; thus, getServiceCategories("") returns the top-level categories
known to SBW.

static ServiceDescriptor[] findServices(String category, boolean recursive)
throws SBWCommunicationException, SBWIncorrectCategorySyntaxException

Returns an array of ServiceDescriptor objects corresponding to all of the services
registered with SBW in the given category. The boolean flag recursive indicates
whether the search should be performed recursively through the service hierarchy. If
true, the string category is matched against all categories and subcategories. An
example use of this method might be to use the category “Analysis” to query for all the
services which provide analyses of SBML models.

The following methods are concerned with obtaining module instances from the SBW Broker.

static Module getModulelnstance(String moduleName)
throws SBWCommunicationException, SBWModuleStartException,
SBWModuleNotFoundException

Returns an instance of the given module. If the module instance has management type
ModuleImpl.UNIQUE (see Section 4.2.4 on page 20), then a Module object corresponding
to an existing module instance is returned. Otherwise, a new module instance is launched
by the SBW Broker. A new instance is always launched if no existing instance exists.
The name moduleName may be either a module’s unique name, or a name prefixed by a
host name in the following form: hostname:modulename. If a host name is given, then
this call causes the module to be started on the named remote host (if possible). If a
Broker is not already running on the remote host, one is started first. Note that for
this facility to work, the SSH client software must be installed on the client computer,
the remote host must be running an SSH daemon, and you must have set up SSH for
password-less authentication as described in Appendix C.

Various unusual conditions may lead to exceptions. These include: null module names,
inability to contact the Broker, inability to start the requested module, inability to start
a Broker on the remote host, etc.

static Module[] getExistingModulelnstances()
throws SBWCommunicationException

Returns an array of Module objects corresponding to every module connected to the
system at this time.

29

static Module[] getExistingModulelnstances(String name)
throws SBWCommunicationException

Returns an array of Module objects corresponding to every running module that has
the given module unique name. (Multiple instances of a module may be running if
the module does not have management type ModuleImpl.UNIQUE and multiple client
modules have requested instances.)

static Module getThisModule()

Returns a Module object representing the currently-running module.

static ModuleDescriptor getModuleDescriptor(String name)

throws SBWCommunicationException, SBWModuleNotFoundException

Returns a ModuleDescriptor object corresponding to the named module.
If no such module is known to SBW, this method throws the exception
SBWModuleNotFoundException.

static ModuleDescriptor[] getModuleDescriptors(boolean includeRunning)
throws SBWCommunicationException

Returns an array of ModuleDescriptor objects corresponding to all modules known to
the SBW Broker. If the boolean flag includeRunning is false, only registered modules
will be included (since those are the only kinds of modules for which the Broker will have
registration information). If the flag is true, this method additionally includes running
module instances. The difference in behavior is relevant when there are unregistered
modules connected to SBW: when includeRunning is false, unregistered modules are
not included in the array of module descriptors returned.

The following methods are used to specify optional listeners to SBW. Listeners are used in
SBW to notify an application of certain events such as module startups and shutdowns. (See

also the class SBWListener described in Section 4.8 on page 34.)

static void addListener(SBWListener listener)

Adds the given listener object to the list of listeners that SBW will call when certain
events occur. (See Section 4.8 on page 34.)

static void removeListener(SBWListener listener)

Removes the given listener object from the list of listeners that SBW will call when
certain events occur. (See Section 4.8 on page 34.)

The following methods are provided mainly for maintenance purposes.

static String getVersion()

Returns the version of the SBW Java API library. The version is a string of the form
“major.minor.build”, corresponding to the major, minor and build numbers, respectively.

static String getBrokerVersion()
throws SBWCommunicationException

Returns the version of the SBW broker. The version is a string of the form “ma-
jor.minor.build”, corresponding to the major, minor and build numbers, respectively.

30

The following method is only needed for using the SBW low-level API, described in Section 5.

static SBWLowLevel getLowLevelAPI()

Returns an object implementing the interface SBWLowLevel (see Section 5.8). Only
clients wishing to use the low-level API should ever call this method.

31

4.7 Class: SBWException

All exceptions used in the SBW API are derived from SBWException. In Java, SBWException
is derived from the standard Java Exception class.

String getMessage()

Returns the message string associated with this exception. This is a string that can be
displayed to the user. (In Java, this method is inherited from Java’s Throwable class).

String getDetailedMessage()

Returns additional details about the exception. This is typically at a level best under-
stood by developers and may include a stack trace.

String getCode()

Returns the integer code assigned to the exception. This is not of much use in Java, but
may be useful when writing low-level API code that interacts with non-Java modules.

The next two methods are useful for simple handling of SBW exceptions in user applications.
They are typically used in code that looks like the following general structure:

try
{
// Make some SBW calls here...

}
catch (SBWException e)

{
e.handleWithDialog();

}

handleWithDialog()

Displays information about this exception to the user in a modal dialog box. The box
has two buttons, OK and Details.... The user can click the OK button to dismiss
the dialog, or click on Details. .. to see the detailed message (if any) associated with
the exception.

handleWithDialog(java.awt.Component parentGUI)

Displays information about this exception to the user in a modal dialog box. The box
has two buttons, OK and Details.... The user can click the OK button to dismiss
the dialog, or click on Details... to see the detailed message (if any) associated with
the exception.

This is identical to the previous method, but takes a single argument, parentGUI, to set
the parent GUI component for the dialog.

Applications may need to construct and communicate their own exceptions, in situations
that call for sending application-level exceptions to other modules. SBW provides the class
SBWApplicationException for this purpose. It has the following constructor:

SBWApplicationException(String message, String detailedMessage)

Create an exception with the given message and detailed message.

A number of exceptions are derived from SBWException. Table 3 on the next page lists each
exception and its meaning.

32

Exception

Meaning

SBWApplicationException

SBWRawException

SBWCommunicationException

SBWModuleStartException

SBWTypeMismatchException

SBWIncompatibleMethodSignatureException

SBWModuleIdSyntaxException

SBWIncorrectCategorySyntaxException

Unused

SBWServiceNotFoundException

SBWMethodTypeNotBlockTypeException

SBWMethodAmbiguousException

SBWUnsupportedObjectTypeException

SBWMethodNotFound

SBWSignatureSyntaxError

SBWModuleDefinitionException

SBWModuleNotFoundException

SBWBrokerStartException

Application-specific exception, thrown deliberately
by a module. This is the only type of exception that
can be created by a module in SBW.

Wrapper around any Java exceptions inadvertently
thrown by a module.

Communications between a caller and receiver
failed, possibly due to a lost connection.

An attempt to start a new module failed.

The type of data element that was attempted to be
read from a message was not the type found. This
often indicates a mismatch between the messages
expected by a caller and receiver.

An interface or class definition uses method signa-
tures that don’t correspond to the signatures on the
corresponding service.

Indicates that a supplied module instance identifier
has incorrect syntax.

A supplied category string has incorrect syntax.
This is thrown by methods that find or search ser-
vices by categories.

This exception code is reserved for future use.
Requested service is not present on this module.

The supplied class uses types which are not SBW
message data block types.

Thrown by search methods such as getMethod on
the Service class to indicate that the given sig-
nature or signature component matches with more
than one method on the given service.

The library encountered an object of a type that it
cannot encode or decode from a message block.

The given method identification number, signature
or partial signature does not match any of the meth-
ods that exist on a given service. This can occur if
a caller uses the low-level SBW API to attempt to
invoke a method on a service and the service has no
method with that index.

Thrown if a signature string does not contain a
valid SBW signature. In the Java API, this is only
thrown by method getMethod on class Service.

Thrown by the ModuleImpl constructors if any as-
pect of a module definition is incorrect.

Thrown if the given module identification name
doesn’t match any module known to SBW.

Thrown by methods that may cause a local or re-
mote Broker to be started; it indicates that SBW
was unable to start the required Broker

Table 3: Exceptions derived from SBWException and their encoding.

33

4.8 Class: SBWListener

Listeners are used in SBW to notify an application that certain events have occurred. The
class SBWListener is an abstract adapter class for receiving notifications of these events. The
methods in this class are empty. This class exists as a convenience for creating SBWListener
objects.

You can extend this class to create an SBW Listener and override the methods for the particular
events of interest. Since this class defines null methods, you only have to define methods for
the events that you care about.

A listener may be registered or deregistered with SBW using the methods SBW.addListener
and SBW.removelistener on the SBW class (Section 4.6 on page 28).

void onModuleShutdown(Module module)

This method on the listener is called every time a module instance somewhere in the
SBW system disconnects from the SBW Broker. The module passed to the method
represents the module instance that has just shut down.

void onModuleStart(Module module)

This method on the listener is called every time a module instance starts up or connects
to the SBW Broker. The module passed to the method represents the module instance
that has just shut down.

void onRegistrationChange()

This method on the listener is called whenever a registration change for a module occurs
in the SBW Broker. “Registration changes” are: a module registering itself with the
Broker, a module registering a service with the Broker, or a module being unregistered.

34

4.9 Class: Service

The Service class represents a service, an interface to resources inside a module. Obtaining an
instance of a Service object implies that a module implementing the service has been launched
by the SBW Broker.

ServiceDescriptor getDescriptor()
throws SBWCommunicationException, SBWModuleNotFoundException,
SBWServiceNotFoundException, SBWException

Returns a ServiceDescriptor object (see Section 4.9) corresponding to this service.
The service descriptor holds information about this service’s unique name, display name,
and other attributes.

Module getModule()

Returns a Module class object corresponding to the module that implements this service.
Since the module instance must already be running, this action does not result in a new
instance being launched; however, it does create a new object of class Module referring
to the same instance.

The most powerful methods on class Service are the following two, which return objects that
serve as proxies for the service. Most applications access remote modules by first obtaining a
proxy object using one of these methods.

Object getServiceObject(Class interfaceClass)

throws SBWCommunicationException, SBWServiceNotFoundException

Returns a proxy object for this service. The proxy object will have the interface specified
by argument interfaceClass. The methods of this object will be the methods specified
by the interface.

The interfaceClass argument is necessary because of how the Java compiler operates.

Object getServiceObject(Class[] interfaceClasses)

throws SBWCommunicationException, SBWServiceNotFoundException

Returns a proxy object for this service. The proxy object will have the interfaces specified
by array of classes in interfaceClasses. The methods of this object will be the methods
specified by the union of the interfaces.

The following two methods return information about the methods defined on this service. The
information is represented using ServiceMethod class objects (see Section 4.11 on page 38),
which only serve to describe service methods at the level of name, signature string, and help
string.

ServiceMethod[] getMethods()

throws SBWCommunicationException

Returns an array of ServiceMethod objects, one for each of the methods on this service.
Since obtaining the method list requires contacting the module instance, this method
may throw an SBWCommunicationException if something goes wrong during communi-
cations.

35

ServiceMethod getMethod(String nameAndArgs)
throws SBWCommunicationException, SBWMethodAmbiguousException,
SBWSignatureSyntaxException

Returns a ServiceMethod object corresponding to the single method described by the
partial signature nameAndArgs. The parameter may consist of only a method name,
or a name and arguments written in the form discussed in Section 4.2.2 on page 18.
Specifically, the allowable syntax is:

SName

or

[ReturnType Space] SName Space? ’(’ VarArglList ’)’

where the optional arguments list is used to locate specific methods with the same name.
The return type is ignored when matching signatures. If the syntax is incorrect, this
method will throw SBWSignatureSyntaxException.

The given name (and optional arguments) is compared to the parsed signatures of the
methods on the service. If more than one method on the service matches the given
argument, this method throws SBWMethodAmbiguousException.

Since obtaining the method list requires contacting the module instance, this method
may throw an SBWCommunicationException if something goes wrong during communi-
cations.

36

4.10 Class: ServiceDescriptor

A service descriptor is used to describe a single service provided by a resource available through
SBW. The information is obtained from the SBW Broker.

A ServiceDescriptor object is similar to a ModuleDescriptor (Section 4.4 on page 23) in
that it provides basic information about a service, but does not necessarily imply that a module
instance implementing the service has been started up. This decoupling of services from service
descriptors allows service descriptor objects to be used as handles to potential services. For
example, if a list of services in a given category is to be displayed to the user before those
services are invoked, a representation is required of those services outside the context of a
module instance.

public Service getServicelnModulelnstance()
throws SBWCommunicationException, SBWModuleStartException

Returns a Service object (Section 4.9 on page 35) corresponding to this service. Since
Service objects are tied to running module instances, invoking this method will either
create a new module instance or reuse an existing instance (depending on the module’s
management type and whether an instance already exists).

String getName()

Returns the unique identification of the service. This name must follow the conventions
outlined in Section 4.2.3. In particular, the name must use the SName syntax as defined
in Figure 11 on page 19, and should start with a capital letter. An example of a service
name is “Simulation”.

String getDisplayName()
Returns the display name of the service. This is suitable for showing to users in a menu

or list. Although there is no fixed limit on the length of display names, they should be
kept short.

String getCategory()

Returns the category of this service. Service categories can consist of any sequence of
non-control characters excluding \n, \ and / but including space. Service category strings
as used in the API are sequences of one or more service category level names separated
by either \ or / characters. An example service category is “Analysis/Bifurcation”.

String getHelp()

Returns a help string for the service. This is an optional description of the service
provided for informational purposes only.

ModuleDescriptor getModuleDescriptor()

Returns a module descriptor object for the module that implements this service.

37

4.11 Class: ServiceMethod

This class is used to describe a method on a service. (In the Java SBW API, its role is limited to
being informational only, although in some of the other language bindings the ServiceMethod
class has additional functionality.)

String getName()

Returns the name of this method.

String getSignatureString()

Returns the signature of this method as a string. Contrast this to the next method,
getSignature (), which returns a tree-structure representation of the method signature.

Signature getSignature()

Returns a Signature object (Section 4.12 on the following page) representing the sig-
nature for this service method. The Signature object provides access to a parsed
representation of the individual components of a method signature.

String getHelp()

Returns the documentation string for this service method.

38

4.12 Class: Signature

The Signature class is used to represent signatures in a parsed, normalized format. This allows
more precise matching of method signatures than using simple string forms of signatures.

String getName()

Returns the name of this method.

SignatureElement[] getArguments()

Returns an array of SignatureElement class objects, one for each of the arguments for
this method. The order of the elements in the array is the order of the arguments in the
method signature.

SignatureElement getReturnType()

Returns a single SignatureElement class object representing the return type of this
method.

String toString()

Converts this method signature to string form.

39

4.13 Class: SignatureElement

A signature element is a name-type pair in a method signature, with the name portion being
optional. This provides a single common structure for representing both method arguments
(where an argument may be either a data type or a data type followed by a name) and list
content types. For example, the method signature "void foo(string a, int b)" contains
two signature elements for its arguments, string a and int b.

String getName()

Returns the name portion of this signature element. This may be null.

SignatureType getType()

Returns a SignatureType class object (Section 4.14 on the next page) representing the
data type of this signature element.

boolean equals(SignatureElement se)

The standard equals method of the Java O0Object class is overloaded by
SignatureElement to permit comparison between two SignatureElement objects. The
equality is determined on the basis of the signature data types only, not the name por-
tion.

40

4.14 Class: SignatureType

A SignatureType class object represents a data type in a signature. The allowable types are
those of the element Type in the syntax definition for method signatures in Figure 11 on page 19.

SignatureType getArraylnnerType()

If this SignatureType object is an array, this method returns the data type of the
elements in the array.

SignatureElement[] getListContents()

If this SignatureType object is a list, this method returns an array of SignatureElement
class objects corresponding to the types of each element in the list.

boolean equals(SignatureType other)

The standard equals method of the Java Object class is overloaded by SignatureType
to permit comparison between two SignatureType objects.

String toString()

Returns a string corresponding to the data type. The possible types are byte, int,
double, boolean, string, void, [] to indicate an array, and to indicate a list.

41

SBW Java Low-Level APl Reference

In addition to using the high-level API described so far, an application can be interfaced
to SBW using a more basic, lower-level API. The SBW low-level API involves building up
messages directly and using call/send methods to communicate with modules and methods
directly, instead of using the object-oriented interface provide by the SBW Java API library.
It allows a module direct and complete control over its interactions with SBW, at the expense
of requiring more work on the part of the programmer. Both the low-level API and the object-
oriented API are available in the same SBW Java library. Their use in a module can even be
mixed if desired.

There are three main elements in the SBW low-level API:

e Message buffers and methods for reading from and writing to them. In SBW, this is
encapsulated by the classes DataBlockReader and DataBlockWriter.

e A receiver object that handles incoming requests from other modules. This is implemented
through the Receiver class.

e An interface for obtaining service and method identifiers and calling the methods, as well
as for performing certain basic operations. This is implemented through the SBWLowLevel
interface class.

The classes associated with the elements above are described in the sections below. In addition
to these classes, there are certain predefined protocols and messages that all SBW modules
obey, and a set of messages that the SBW Broker understands. The protocols are defined
below in Sections 5.3 and 5.4.

5.1 Using the Low-Level API

A client program using the low-level API typically follows a certain pattern:

1. The client first obtains an object implementing SBWLowLevel. This is done using the
SBW.getLowlLevelAPI call (Section 4.6), using code such as the following:

try
{
rpc = SBW.getLowLevelAPI();
}
catch (Exception e)
{
e.handleWithDialog();
}

2. The client next connects to SBW using one of the variants of the connect method on
SBWLowLevel.

3. Once connected to SBW, the client can obtain information about the modules known to
the Broker. It can do this by sending specific messages to the SBW Broker using the
call method on SBWLowLevel. The messages are described in Section 5.4. This allows
a module to obtain the numeric identifiers corresponding to specific instances of modules
connected to the Broker.

4. Given one or more module identifiers, the client can then use the SBWLowLevel methods
getServiceld and getMethodId to determine the numeric service and method identifiers
for desired services and methods.

42

5. The client can then use the SBWLowLevel methods call and/or send to invoke specific
service methods on specific modules.

If a module is to provide services for use by other modules, it must in addition register a
Receiver object (see Section 5.7). This object must handle a number of SBW system messages,
in addition to dispatching any of its own methods for implementing the services it provides.

5.2 Identifiers

Modules, services and service methods are referred to, in the low-level API calling methods,
using integer numbers as identifiers. In particular, the low-level call and send methods on
SBWLowLevel (see Section 5.8) use only these numerical identifiers, and not names, to address
which specific method on a module is to be invoked. To determine the identifiers for services
and methods on a remote module, a client module must use the methods getServiceId and
getMethodId on class SBWLowLevel.

The SBW Broker is preassigned an identifier of —1, and every module must implement a
service called SYSTEM whose identifier is —1. There are a number of predefined methods on
the SYSTEM service, and these have preassigned identifiers as well. They are listed in Table 5
on page bH4.

Service identifiers, like service names, are local to modules, and method identifiers are local to
services on specific modules. There may be a module whose identifier is 0, as well as a service
0, and a service method 0 on that service, and they all mean different things. Similarly, there
may be two different modules that both have services with identifiers 0, but the two services
can be completely unrelated.

Except for the preassigned identifiers, a module must not assume that the identifier for a
module, a service, or a service method is the same from one SBW session to another. Module
identifiers are assigned by the SBW Broker in an unspecified order to modules as they connect
to the Broker. These identifiers are not persistent and will change when the Broker is restarted.
Moreover, a module’s internal implementation may change from session to session, and it is
permissible for a module to reorder service identifiers and the method identifiers of methods
on those services. (The exception, of course, is that the SYSTEM service and the methods
on that service must be given the values defined in Table 5 on page 54.) The implication of
this is that client applications should not be written with hardwired module, service or service
method identifiers. At the beginning of its interactions with a remote module in a given session,
a client should always obtain the service identifiers and method identifiers using SBWLowLevel’s
getServiceld and getMethodId. It can then use those identifiers for the remainder of its
interactions with the remote module during that session.

5.3 Methods Required to Be Implemented by All Modules

As mentioned above, all modules must implement at least one service, called the SYSTEM
service. This service has the following predefined methods (where the method signatures are
given in the SBW signature string format defined in Figure 11 on page 19):

string[] getServices()
This method returns the unique names of all services implemented by this module.
The index number of each service in the returned array must correspond to the iden-
tification number for that service.

string[] getMethods(int serviceld)

This method returns an array of method signatures, one for each method defined on
the service indexed by service identifier serviceId. The index number of each method
in the returned array must correspond to the identification number for that method
on the service.

43

string getMethodHelp(int serviceld, int methodId)
This method returns the help string associated with the method identified by methodId
on the service identified by servicelId.

These methods must be implemented as part of the Receiver object described in Section 5.7.

5.4 Methods Implemented by the SBW Broker

44

5.5 Class: DataBlockWriter

The message-passing system implemented in SBW is a relatively simple scheme that encodes
data values as bytes and sends them in a stream across a socket connection. The message
encoding has a custom format in which each data element in a message is prefixed by a byte that
describes its data type. The supported data types have already been described in Section 3.1.
The SBW message block is the programming abstraction used to interact with messages. The
class DataBlockWriter implements methods for writing message blocks.

DataBlockWriter()

Constructor; creates an empty message block. Contents can be added to the message
block using the methods listed below.

void release()

Indicates to SBW that this data block will no longer be used and may be reclaimed.
Client applications should call this method after having used the contents of a message
in an SBWLowLevel.call or SBWLowLevel.send operation.

void add(Object o)

throws SBWUnsupportedObject TypeException

Appends the given Java object to the current message block. The object is converted to
the appropriate SBW primitive type automatically. The object in parameter o must be
of one of the following Java data types, or 1-D or 2-D arrays of these types:

java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Byte
java.lang.Boolean
java.lang.List

In the case of java.lang.List, each of the items in the list must be one of the data
types listed above, or 1-D or 2-D arrays of these types, potentially including more lists.
If the object in parameter o is not one of the supported SBW data types (Section 3.1),
this method throws an exception of class SBWUnsupportedObjectTypeException.

void add(boolean b)

Appends the given boolean data item to the current message block.

45

void add(Collection c)
throws SBWUnsupportedObject TypeException

Adds a Java collection as a list of items into the current message block. Each object in
the collection is converted to the appropriate SBW primitive data type automatically.
The reader of the message will see this element as a single list.

The objects in parameter ¢ must be of one of the following Java data types, or 1-D or
2-D arrays of these types:

java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Byte
java.lang.Boolean
java.lang.List

In the case of java.lang.List, each of the items in the list must be one of the data
types listed above, or 1-D or 2-D arrays of these types, potentially including more lists.
If the object in parameter c is not one of the supported SBW data types (Section 3.1),
this method throws an exception of class SBWUnsupportedObjectTypeException.

void add(byte b)

Appends the given byte to the current message block. The data item becomes a separate
element in the message; this is in contrast to writing an array of bytes, where a sequence
of bytes all become part of a single data element in the message.

void add(double d)
Appends the given double-type data item to the current message block.

void add(int i)

Appends the given integer to the current message block.

void add(String s)

Appends the given Java string item to the current message block.

void add(int[] a)

Appends the given one-dimensional array of integers to the current message block.

void add(int[][] a)

Appends the given two-dimensional array of integers to the current message block.

void add(byte[] a)

Appends the given one-dimensional array of bytes to the current message block.

void add(byte[][] a)

Appends the given two-dimensional array of bytes to the current message block.

46

void add(boolean[] a)

Appends the given one-dimensional array of booleans to the current message block.

void add(boolean[][] a)

Appends the given two-dimensional array of booleans to the current message block.

void add(String[] a)

Appends the given one-dimensional array of strings to the current message block.

void add(String[][] a)

Appends the given two-dimensional array of strings to the current message block.

void add(double[] a)

Appends the given one-dimensional array of doubles to the current message block.

void add(double[][] a)

Appends the given two-dimensional array of doubles to the current message block.

void add(Collection[] a)
throws SBWUnsupportedObject TypeException

Appends the given one-dimensional array of Java collections to the current message
block.

Each of the objects in each collection of the array a must be of one of the following Java
data types, or 1-D or 2-D arrays of these types:

java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Byte
java.lang.Boolean
java.lang.List

In the case of java.lang.List, each of the items in the list must be one of the data
types listed above, or 1-D or 2-D arrays of these types, potentially including more lists.
If the object in parameter c is not one of the supported SBW data types (Section 3.1),
this method throws an exception of class SBWUnsupportedObjectTypeException.

47

void add(Collection[][] a)
throws SBWUnsupportedObject TypeException

Appends the given two-dimensional array of Java collections to the current message
block.

Each of the objects in each collection of the array a must be of one of the following Java
data types, or 1-D or 2-D arrays of these types:

java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Byte
java.lang.Boolean
java.lang.List

In the case of java.lang.List, each of the items in the list must be one of the data
types listed above, or 1-D or 2-D arrays of these types, potentially including more lists.
If the object in parameter c¢ is not one of the supported SBW data types (Section 3.1),
this method throws an exception of class SBWUnsupportedObjectTypeException.

Several static constants are also defined by DataBlockWriter for identifying message data
types. These are listed in Table 4. At the level of client code, only the method getNextType on
DataBlockReader (see Section 5.6) can return one of these type codes. They are not exposed
to client code in the writing operations defined below, because all of the writing operations
encapsulate the task of prepending the appropriate type specifier when a data element is written
to a message block.

Type Code Meaning
DataBlockWriter.BYTE_TYPE Data element is a byte
DataBlockWriter.INTEGER_TYPE Data element is an integer
DataBlockWriter.DOUBLE_TYPE Data element is a double
DataBlockWriter.BOOLEAN_TYPE Data element is a boolean
DataBlockWriter.STRING_TYPE Data element is a string
DataBlockWriter.ARRAY TYPE Data element is an array
DataBlockWriter.LIST_TYPE Data element is a list

DataBlockWriter.TERMINATE TYPE Message terminator

Table 4: Type codes defined by SBW for identifying data element types in messages. Each code has the
Java data type byte. These are the possible values that the message block reader class, DataBlockReader,
can return from the getNextType () method call.

48

5.6 Class: DataBlockReader

The class DataBlockReader implements methods for reading message block data. SBW returns
an object of this class from calls that involve receiving messages, and client applications can
use the methods on this class to extract the data elements out of the message.

Note that client applications cannot actually create new DataBlockReader objects themselves;
only SBW does that. The SBWLowLevel class (Section 5.8) and the Receiver class (Section 5.7)
are the two low-level API classes that make use of DataBlockReader.

Object getObject()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block and returns it as an object.
Primitive types are wrapped appropriately, so that for example, an integer is returned
as a Java Integer object.

If an unknown data item is encountered, this method throws an
SBWTypeMismatchException.

byte getNextType()

Returns a byte representing the data type of the next data item in the message block.
Unlike the other get methods described below, getNextType() does not consume the
data item in the message. The possible byte codes are listed in Table 4 on the page
before.

int getint()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it
is an integer. If the next element is not an integer, this method throws an
SBWTypeMismatchException.

boolean getBoolean()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a boolean.
If the next element is not a boolean, this method throws an SBWTypeMismatchException.

byte getByte()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a byte.
If the next element is not a byte, this method throws an SBWTypeMismatchException.

String getString()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a string.
If the next element is not a string, this method throws an SBWTypeMismatchException.

double getDouble()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a double-
type floating-point number. If the next element is not a double, this method throws an
SBWTypeMismatchException.

49

Collection getIntoCollection()

throws SBWTypeMismatchException

Extracts the entire contents of the rest of this message and returns it as a Java collection.
This works by calling getObject () repeatedly until it reaches the end of the message.

List getList()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a list.
If the next element is not a list, this method throws an SBWTypeMismatchException.

int[] get1DIntArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a one-
dimentionsal array of int. If the next element is not a 1-D array of integers, this method
throws an SBWTypeMismatchException.

int[][] get2DIntArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a two-
dimentionsal array of int’s. If the next element is not a 2-D array of integers, this
method throws an SBWTypeMismatchException.

boolean[] getlDBooleanArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a one-
dimentionsal array of booleans. If the next element is not a 1-D array of booleans, this
method throws an SBWTypeMismatchException.

boolean[][] get2DBooleanArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a two-
dimentionsal array of booleans. If the next element is not a 2-D array of booleans, this
method throws an SBWTypeMismatchException.

byte[] getlDByteArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a one-
dimentionsal array of bytes. If the next element is not a 1-D array of bytes, this method
throws an SBWTypeMismatchException.

byte[][] get2DByteArray()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a two-
dimentionsal array of bytes. If the next element is not a 2-D array of bytes, this method
throws an SBWTypeMismatchException.

50

String[] get1DStringArray()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a one-
dimentionsal array of strings. If the next element is not a 1-D array of strings, this
method throws an SBWTypeMismatchException.

String[][] get2DStringArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a two-
dimentionsal array of strings. If the next element is not a 2-D array of strings, this
method throws an SBWTypeMismatchException.

double[] get1DDoubleArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a one-
dimentionsal array of double-type items. If the next element is not a 1-D array of
doubles, this method throws an SBWTypeMismatchException.

double[][] get2DDoubleArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a two-
dimentionsal array of doubles. If the next element is not a 2-D array of doubles, this
method throws an SBWTypeMismatchException.

List[] get1DListArray()

throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a one-
dimentionsal array of lists. If the next element is not a 1-D array of lists, this method
throws an SBWTypeMismatchException.

List[][] get2DListArray()
throws SBWTypeMismatchException

Extracts and returns the next element in the message block, assuming that it is a two-
dimentionsal array of lists. If the next element is not a 2-D array of lists, this method
throws an SBWTypeMismatchException.

51

5.7 Interface: Receiver

This interface class is used to define a receiver for messages sent to a module. The interface
has only one method, receive, as defined below. If a module wishes to use the SBW low-level
API, it must create an object that implements the Receiver interface, and then register that
object using the registerReceiver method on class SBWLowLevel (see Section 5.8).

DataBlockWriter receive(int fromModule, int serviceld, int methodld, DataBlockReader args)
throws SBWException

Whenever a message arrives for this module, this method is called with arguments to
indicate the source module (moduleId), the service being invoked (serviceId), and
the method on that service (methodId), along with a message block containing any
arguments for that method.

Figure 12 gives an example implementation of a receive method. It begins with a switch
on the service identifier to determine whether the incoming message is invoking a SYSTEM

0~ O Uk WN

S 0 W W W W W W W W W N DNDNDNDNDDNDNDNDN = e e e e e e
H O OO WNHF OO UR WNHFHE O OO Uk W~ O©

public DataBlockWriter receive(int fromModuleld, int serviceld,
int methodId, DataBlockReader args)
throws SBWException
{
if (serviceld == SBWLowLevel.SYSTEM_SERVICE)
{
DataBlockWriter writer = new DataBlockWriter();
try
{
switch (methodId)
{
case SBWLowLevel.GET_SERVICES_METHOD:
writer.add(// ... 1list of this module’s services ...);
return writer;

case SBWLowLevel.GET_METHODS_METHOD:
int queryServiceld = args.getInt();
writer.add(// ... signatures of methods on the service ...);
return writer;

case SBWLowLevel.GET_METHOD_HELP_METHOD:
int targetServiceld = args.getInt();
int targetMethodId = args.getInt();
writer.add(// ... help string for the method ...);
return writer;

default:
throw new SBWApplicationException(

"Method " + methodId + " does not exist on service " + serviceIld, "");

}
}
catch (Throwable t)
{
// Handle the error here ...);
}
}
else
{
return getService(serviceld) .invokeMethod(fromModuleId, methodId, args);
}
}

Figure 12: Example implementation of a Receiver receive method for a module.

52

service or a service on the module proper. In the former case, it then switches between a set
of predefined method identifiers. In the latter case, it hands control to another method that
handles service invocations for this module.

53

5.8 Interface: SBWLowLevel

This interface class defines generic operations in the SBW low-level API. As discussed in Sec-
tion 5.1, a client program must obtain an object implementing the SBWLowLevel interface by
calling SBW.getLowLevelAPI. From that point on, it can invoke the SBWLowLevel methods
in order to connect to SBW, obtain information about modules and services, and use the
call/send methods to invoke methods on remote services.

Certain static constants are defined by SBWLowLevel to identify the fundamental services and
methods necessary for SBW to function. Table 5 lists these constants and their meanings.

Constant Value Meaning

SBWLowLevel .BROKER_MODULE —1 Module identifier for the SBW Broker

SBWLowLevel.SYSTEM_SERVICE —1 Service identifier for the “SYSTEM” service

SBWLowLevel.GET_SERVICES_METHOD 0 Identifier for method to get a list of services offered by
a module

SBWLowLevel . GET_METHODS_METHOD 1 Identifier for method to get a list of methods available

on a given service

SBWLowLevel.GET_METHOD _HELP_METHOD 4 Identifier for method used to obtain the help string of
a specific method

Table 5: Predefined constants in the SBW low-level API.

void connect(String moduleName)
throws SBWCommunicationException

Connect to the SBW Broker running on the current host computer. The argument
moduleName should be a unique module name that identifies this module to the rest of
SBW. If the argument is empty or null, it signifies that this module will not provide
services to SBW, just as if it connected using SBW.connect (). (In effect, it will act as
an anonymous module.)

void connect(String moduleName, String hostNameOrIP)
throws SBWCommunicationException

Connect to the SBW Broker running on the host identified by the name or IP address in
parameter hostNameOrIP. The argument moduleName should be a unique module name
that identifies this module to the rest of SBW. If the moduleName is empty or null, it
signifies that this module will not provide services to SBW, just as if it connected using
SBW. connect (). (In effect, it will act as an anonymous module.)

A client can only be connected to one SBW Broker at a time. An attempt to con-
nect to SBW when a client is already connected results in an exception of class
SBWCommunicationException.

boolean isConnected()

Returns true if this application is currently connected to SBW.

void disconnect()

Disconnects from from SBW. This causes disconnection messages to be sent to the SBW
Broker and the communications sockets to be closed.

54

int getServiceld(int moduleld, String serviceName)
throws SBWException

Given a module’s numeric identifier and the name of a service, this method returns
the numeric service identifier. This is achieved by contacting the module directly. The
SBW Broker purposefully does not cache this information to avoid the risk of having
the information fall out of date.

Applications should not store numeric service identifiers beyond the duration of a single
session with SBW. A module may be updated or otherwise changed in-between sessions,
and the correspondence between services and their identifiers may be reassigned by the
module. A client should always obtain the service identifiers afresh in each new session.

int getMethodld(int moduleld, int serviceld, String signature)

throws SBWException

Given a module’s numeric identifier, a service identifier, and a method’s signature string
(cf. Section 4.2.2), getMethodId returns the numeric method identifier. This is achieved
by contacting the module directly. The SBW Broker purposefully does not cache this
information to avoid the risk of having the information fall out of date.

The same warnings apply as for service identifiers: applications should not store numeric
method identifiers beyond the duration of a single session with SBW. A module may
be updated or otherwise changed in-between sessions, and the correspondence between
methods and their identifiers may be reassigned by the module. A client should always
obtain the method identifiers anew in each new session.

int getThisModule()
throws SBWException

This method returns the numeric identifier for the currently-running module. (See also
SBW.getThisModule() in sec:ref:sbw-class.)

The following two methods, call and send, are the two communications method available in
the SBW low-level API. The call method is analogous to a traditional RPC (remote-procedure
call) mechanism. The send method is more in the spirit of a message-oriented invocation.

The following is an example of a call on the SBW Broker, using the SYSTEM service and the
method GET_-METHODS_METHOD. The argument to the call is the integer 0, written into
a DataBlockWriter object. The effect of this call is to ask the Broker to provide a list of the
methods on its 0’th service (which happens to be the Broker service—see the discussion of the
Broker messages in Section 5.4). The return value from the call is an array of strings.

DataBlockWriter data;
DataBlockReader results;

data = new DataBlockWriter();
try
{
data.add(0);
results = rpc.call(SBWLowLevel.BROKER_MODULE,
SBWLowLevel.SYSTEM_SERVICE,
SBWLowLevel.GET_METHODS_METHOD,
data);
//The results are supposed to be an array of strings.
String[] names = results.get1DStringArray();

}

catch (Exception e)

{
System.err.println("Unexpected problem:");
e.printStackTrace();

55

System.exit(1);
}

Note the use of the predefined constants for identifying the module, service and method to be
invoked; see Table 5 on page 54 for a listing.

DataBlockReader call(int moduleTo, int serviceld, int methodld, DataBlockWriter args)
throws SBWException

This implements the fundamental, synchronous (blocking) remote method call. Given a
module’s identifier (in moduleTo), a service identifier (in serviceId), and a method iden-
tifier (in methodId), this invokes the indicated service method on the indicated module
with arguments args. It waits for a return value and returns it as a DataBlockReader.
See Section 5.2 for a discussion of identifiers and Section 5.6 for a definition of class
DataBlockWriter.

Any of the exceptions listed in Table 3 may be thrown while attempting to make this
call.

void send(int moduleTo, int serviceld, int methodld, DataBlockWriter args)
throws SBWException

This implements the fundamental, asynchronous (non-blocking) message sending oper-
ation. Given a module’s identifier (in moduleTo), a service identifier (in serviceId),
and a method identifier (in methodId), this invokes the indicated service method on the
indicated module with arguments args. Unlike the previous method (call), this does
not wait for a return value; instead, it returns immediately.

Any of the exceptions listed in Table 3 may be thrown while attempting to make this
call.

void registerReceiver(Receiver rec)

Installs the given Receiver-class object as the receiver for this module. This object
will be called to handle the bodies of incoming messages. The receiver object must
implement the functionality described in Section 5.7.

56

N

0~ O Ui WN

Complete Examples of Using the APlIs

This section presents complete examples of programs using the SBW Java interface. In the first
example below, we provide full details of how to compile and run the code; subsequent examples
omit the additional details. The instructions for compiling and running the code largely repeat
information already presented in Section 4.1, but we do so anyway for clarity and the reader’s
convenience.

A.1 Example of Implementing a Module

This example presents the implementation of a module named “edu.caltech.trigj” providing
a service named “Trig”. This is essentially the same example as used in Section 3.4; the
code presented here is also included with the SBW source distribution in the subdirectory
src/tutorials/Java/TrigJServerModule.

The “Trig” service in this example is placed in a top-level service category named “trigonom-
etry”. For convenience, the code is split into two files, one for the service implementation
(Trig. java, shown in Figure 13) and one for the main routine (TrigApplication. java, shown
in Figure 14 on the next page). Note that in Java, it is important to place these files in a subdi-
rectory structure that matches the package name; in other words, the two files must be placed
in a directory called edu/caltech/trigj.

package edu.caltech.trigj;
import java.lang.Math;

public class Trig

{
/** This becomes the "sin" method of service "Trig". **x/
public double sin(double x)
{
return Math.sin(x);
}
/*% This becomes the "cos" method of service "Trig". **/
public double cos(double x)
{
return Math.cos(x);
}
}

Figure 13: Contents of the file Trig. java.

To run these examples, follow the instructions given in Section 4.1. Here we only provide a
summary of those steps. First, place the two Java source files in a directory tree having the path
edu/caltech/trigj. Then, at the top of this directory tree, execute the following command
to compile the Java code:

javac -classpath SBW_HOME/1lib/SBWCore.jar:. edu/caltech/trigj/+.java

where, as usual, SBW_HOME stands for the path to the SBW directory on your computer.

Once you have compiled the Java source files, you can run the module in “registration” mode
by executing the following command (all on one line):

java -classpath SBW_HOME/lib/SBWCore.jar:. \
edu.caltech.trigj.TrigApplication -sbwregister

The module will run briefly and then exit, having registered itself with the SBW Broker. To run
the module in “module” mode, where it offers its service to other modules, use the —~sbwmodule

57

0~ O U WN

package edu.caltech.trigj;
import edu.caltech.sbw.x*; // Import SBW.

public class TrigApplication
{
public static void main(String[] args)
{
// Calls to ModuleImpl must be wrapped with a try-catch, in order
// to catch possible exceptions from SBW.

try

{
// First, we create the module definition. This uses the
// simplest form of the ModuleImpl constructor. The various
// parts of the module’s definition, such as its unique name,
// are defaulted. There are other wversions of the ModuleImpl
// constructor that accept more arguments.

ModuleImpl moduleImpl = new ModuleImpl("Java Trig Module");
// Next, we add the service definitions.

moduleImpl.addService("Trig", "Trigonometric functions",
"trigonometry", Trig.class);

// Finally, we take action based on the command-line arguments
// passed to us. If one of the arguments is -sbuwregister or
// -sbumodule, run() will take appropriate action; otherwise it
// will do nothing and just return. There is nothing else to
// do here, so we don’t follow up the call to run() with

// anything else in this particular program.

moduleImpl.run(args) ;

}
catch (SBWException e)

{
// SBW reported an exception. Use the methods on SBWExzception
// to show the exception to the user.

e.handleWithDialog();

Figure 14: Contents of the file TrigApplication. java.

flag as follows (again, all on one line):

java -classpath SBW_HOME/1ib/SBWCore.jar:. \
edu.caltech.trigj.TrigApplication -sbwmodule

You could also create a self-contained JAR file for this module by using the sbw-make-jar

program discussed in Appendix B.

A.2 Example of Calling a Service

This example presents a client that accesses the trigonometry service implemented in the
previous example. This is the complete Java code for the example discussed in Sec-
tion 3.3. The code is also included with the SBW source distribution in the subdirectory

src/tutorials/Java/TrigJClientModule.

58

© 00 O Ut Wi

There are two files in this example. The first (Trigonometry.java, shown in Figure 15)
defines the interface of the service. A second file that contains the actual client code
(TrigClientApplication. java is shown in Figure 16 on the next page.

package edu.caltech.trigjclient;
import edu.caltech.sbw.*;

public interface Trigonometry

{
double sin(double x) throws SBWException;
double cos(double x) throws SBWException;

Figure 15: Contents of the file Trigonometry. java.

The code for the client in Figure 16 uses a Java Swing graphical widget for creating an input
dialog box. The user can enter a numerical value for an angle. The program then takes this
value and calls trigSin, a method that encapsulates invoking the edu.caltech.trigj module’s
“Trig” service.

The steps for compiling the code and running it are similar to those detailed in the previous
example.

A.3 Example of Finding Multiple Modules in a Category

This example corresponds to the code discussed in Section 3.5. Here we use a Java list and
populate it with the names of all known services in the category “Analysis”. When the user
selects a value from the list, the program asks SBW for a module instance implementing that
service and then invokes the method void doAnalysis(string sbml) on that module. The
variable sbml is a model description in SBML format Hucka et al. (2001b), obtained from the
user using a separate Java JEditorPane.

59

line 10

0~ O U WN

package edu.caltech.trigjclient;

import javax.swing.x*;
import edu.caltech.sbw.x*; // Import SBW.

public class TrigClientApplication

{

public static void main(String[] args)

{

}

String angleString = JOptionPane.showInputDialog(null, "Enter angle:");
double angle = Double.valueOf (angleString) .doubleValue();

// The following does its work using the method below.

double result = trigSin(angle);

JOptionPane.showMessageDialog(null, "Result: " + Double.toString(result));

// Done.

System.exit (0);

public static double trigSin(double the_angle)

{

try

{

}

SBW.connect();

// Request an tinstance of the module "edu.caltech.trigj", and
// look up the service "Trig" on it.

Module module = SBW.getModuleInstance("edu.caltech.trigj");
Service service = module.findServiceByName("Trig");

// Get an object that will act as a proxy for the remote service.

Trigonometry trig
= (Trigonometry) service.getServiceObject(Trigonometry.class);

// Now make use of a method on the service using the prozy object.
double result = trig.sin(the_angle);
// We’re done, so shutdown the module and disconnect from SBW.

module.shutdown() ;
SBW.disconnect();

return result;

catch (SBWException e)

{
}

e.handleWithDialog();

// Under normal circumstances, things shouldn’t get this far.
return O;

Figure 16: Contents of the file Trigonometry. java.

60

0~ O U WN

import java.awt.x*;

import java.awt.event.x*;

import javax.swing.x*;

import com.borland.jbcl.layout.*;
import edu.caltech.sbw.x*;

interface Analysis
{

void doAnalysis(String sbml);
}

public class AnalysisDriverFrame
{
JEditorPane SBMLEditorPane = new JEditorPane();
JList list = new JList();
JButton OKButton = new JButton();
JLabel SBMLLabel = new JLabel();
JLabel AnalysisLabel = new JLabel();

public AnalysisDriverFrame (SBWGUIModule p)
{
super (p, "Analysis Driver");
enableEvents (AWTEvent . WINDOW_EVENT_MASK) ;
try {
jbInit();
}
catch(Exception e) {
e.printStackTrace();
}
}

//Component initialization

private void jbInit() throws Exception

{
this.getContentPane() .setLayout (null) ;
OKButton.setText ("OK") ;
OKButton.setBounds(new Rectangle(199, 212, 83, 33));
OKButton.addMouseListener(new java.awt.event.MouseAdapter() {

public void mouseClicked(MouseEvent e) {
OKButton_mouseClicked(e);
}

b;
list.setBorder (BorderFactory.createLoweredBevelBorder());
list.setSelectionMode (ListSelectionModel.SINGLE_SELECTION) ;
list.setBounds(new Rectangle(72, 150, 292, 49));
SBMLEditorPane.setBorder (BorderFactory.createlLoweredBevelBorder());
SBMLEditorPane.setBounds (new Rectangle(71, 30, 292, 94));
SBMLLabel.setText ("SBML:") ;
SBMLLabel.setBounds (new Rectangle(28, 34, 42, 33));
AnalysisLabel.setText ("Analysis:");
AnalysisLabel.setBounds(new Rectangle(15, 146, 50, 27));
this.getContentPane () .add(0KButton, null);
this.getContentPane () .add (SBMLEditorPane, null);
this.getContentPane() .add(list, null);
this.getContentPane () .add(SBMLLabel, null);
this.getContentPane() .add (AnalysisLabel, null);

// Get analysis service records.
try
{

Example of finding multiple modules in a category (continued on the next page).

61

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

ServiceDescriptor[] descriptors = SBW.findServices("Analysis");
list.setListData(descriptors);
list.setCellRenderer(new AnalysisCellRenderer());

}

catch (SBWException e)

{
e.handleWithDialog();

}

}

void OKButton_mouseClicked(MouseEvent e)
{
if (!list.isSelectionEmpty())
{
String sbml = SBMLEditorPane.getText();

try
{
ServiceDescriptor descriptor
= (ServiceDescriptor)list.getSelectedValue();
Service service
= descriptor.getServiceInModuleInstance();
Analysis analysis
= (Analysis)service.getServiceObject(Analysis.class);

analysis.doAnalysis(sbml);

}

catch (SBWException e)

{
e.handleWithDialog() ;

}

}
}
}

public class AnalysisCellRenderer implements ListCellRenderer

{

private DefaultListCellRenderer defaultRenderer
= new DefaultListCellRenderer();
public Component getListCellRendererComponent(JList list, Object value,
int index, boolean isSelected,
boolean hasFocus)
{
String name = ((ServiceDescriptor) value).getDisplayName();
return defaultRenderer.getListCellRendererComponent(list, name, index,
isSelected, hasFocus);
}
}

Figure 17: Example of finding multiple modules in a category.

62

. B The sbw-make-jar Program

The standard Java run-time environment version 1.3 and above provides only two ways of
starting a Java program. The one that is probably familiar to most users has the following
form:

java -classpath path... main.entry.point

This form requires that the path to the program’s files be specified either through the envi-
ronment variable CLASSPATH, or via the optional -classpath path... argument, or via
a special manifest entry in the program’s JAR file(s). In addition, the form of the command
above also requires specifying the class holding the entry point of the program.

When using an integrated development environment (IDE), having to specify this information
may not be onerous. However, when working with multiple Java programs outside of an IDE,
and/or deploying standalone modules, this scheme quickly becomes too tedious. One issue is
that the class path must include the files for both the application and the libraries (such as
SBWCore. jar) on which the application depends. If one is using a CLASSPATH environment
variable, each program’s JAR file (or directory of class files) must be added to the CLASSPATH.
If one is using the command-line argument -classpath, the value of the path... must be
adjusted for each program.

The second way of starting a Java program is to use a command of the following form:
java -jar jarfile

The jarfile can be constructed in such a way that its manifest specifies the main class to run.
If the jarfile also includes all class files that it depends on (such as the SBW library files),
then it is relocatable and does not require any external CLASSPATH environment. This form
of Java program invocation is obviously much simpler than the first form, and has the added
advantage that on Microsoft Windows and Sun Solaris systems, simply double-clicking on the
jarfile name in a file explorer window will start up the Java program. Isn’t that nice?

SBW provides a utility called sbw-make-jar for constructing stand-alone JAR files suitable for
use with this second form of Java program invocation. sbw-make-jar is a command-line utility
installed in the “bin” subdirectory of SBW_HOME available for Linux and Cygwin (in Windows)
environments. It can be invoked using a command line with the following form:

sbw-make-jar -a addJAR -d jarname mainclass files...

The meanings of the three required arguments are:

jarname: The filename of the final JAR file that will be created.

textitmainclass: The Java class (in full dotted classpath notation) that contains the main
entry point of the program.

textitfiles...: A list of all files that are to be incorporated in the jarname produced.
Usually these are .class files, but depending on the application, they may perhaps
include other resource files.

The underlined arguments are optional and have the following meanings:

-a addJAR: This flag requires one argument, addJAR. The program sbw-make-jar will ex-
tract all of the files in the named JAR file addJAR and merge them into the final JAR
file (jarname). Multiple -a addJAR arguments can be given. You must use this flag if
your Java application depends on additional libraries besides the SBW Java library and
the standard Java run-time libraries.

63

-d: By default, sbw-make-jar uses the optimized version of the SBW library from
the SBW installation (i.e., the file SBW.HOME/1ib/SBWCore.jar). The optional flag
-d instructs the program to use the debugging version of the SBW library (i.e.,
SBW_HOME /1ib/SBWCore-debug. jar).

The program sbw-make-jar builds a JAR file that contains all of the files listed on the command
line and the class files that comprise the SBW core library. This has two implications. First, the
resulting JAR file is larger than if the SBW core library was left out and referenced through the
CLASSPATH environment variable or other means. Second, if the SBW library changes,
the JAR file must be rebuilt. These issues must be traded off against the ease of invocation
and portability afforded by using this approach.

As an aside, we have tested many other approaches besides this, in order to make the invocation
of SBW Java applications as simple as possible. For example, it is possible (in Java versions 1.3
and later) to place a classpath specification in the manifest of a JAR file. We have tried using
this to make JAR files refer to an external copy of the SBW Java library instead of incorporating
the SBW classes. However, there is a limitation in what can be placed in the class path specified
by the manifest of a JAR file: the items must be relative pathnames. If the dependent libraries
are not located in the same directory as the JAR file itself, constructing a valid pathname can
become difficult and dependent on the installation of the user/developer constructing the JAR
file. It also means that the JAR file is not portable to other systems. Other approaches have
had other limitations, and so we have settled on constructing the analogs of statically-linked
executables for JAR modules.

64

. C Setting Up SSH for Distributed SBW Operation

Although many situations involve all modules running on the same host computer, SBW sup-
ports the ability to run modules on remote hosts as well. Each remote host runs a separate
Broker process; modules on that host connect to the Broker (the local Broker for that host),
and each Broker Broker arranges to route messages between modules whether they are local or
remote.

When a remote Broker is started, each existing Broker is informed of the modules that are
registered with it. Every Broker thus knows about every other Broker’s modules, and offers an
amalgamated view to any module that queries for available modules and services. Figure 18
illustrates the organization of modules and Brokers when multiple Brokers are running.

o o

host2

host3

host1

Figure 18: Example of multiple Brokers and multiple modules running on separate computers. Each module
(represented by the yellow circles) connects only to the Broker on the local host; the Brokers on separate
hosts connect to each other and route messages between modules as appropriate.

Brokers are started automatically when a module is requested on a remote host. There are two
API calls that can cause a remote Broker to be started:

e SBW.getModuleInstance(moduleName), described in Section 4.6, accepts module names
of the form hostName:moduleName. If the argument has this form, then the hostName
part is used as the name of the remote host where the module should be started.

e SBW.link(hostNameOrAddress), described in Section 4.6, allows a program to connect
explicitly to a Broker running on the host indicated by parameter hostNameOrAddress.
This is useful when a module wishes to browse the list of modules and services known
to a remote Broker. However, in practice, most remote Brokers and modules are started
using the getModuleInstance call described above.

SBW uses SSH (Barrett and Silverman, 2001) to start remote Brokers and establish a secure

tunnel connection between Brokers on separate hosts. In order for this to work, the following
conditions must be met:

65

e The remote host must be running the SSH daemon and allow remote SSH connections.
This is the case for many Unix/Linux hosts; if SSH is not enabled on the target host,
you must either enable it yourself (if you have administrative control over the computer),
or ask your systems administrator to enable SSH for you. If the remote host is running
Microsoft Windows, you will first have to install an SSH daemon package, and then enable
incoming SSH connections on that host. The steps for doing this are beyond the scope of
this API manual. [Since SSH is a very popular system, it is easy to find instructions on
the internet and in books such as the one by Barrett and Silverman (2001).]

e You must have set up your SSH accounts in such a way that you can use SSH to run
commands on the remote host without having to supply a password. A good test to verify
that this is the case (at least in the case of a remote Unix/Linux host) is to try typing a
command such as the following in a command shell:

ssh remotehost date

The date command simply returns a one-line reply indicating the current date. If SSH is
set up properly for password-less execution, then the command above should not prompt
you for a password. If it prompts you for a password, your SSH account or other elements
are not set up properly.

Once SSH is set up properly, it is possible to start remote modules and Brokers seamlessly
using the two API calls listed above.

66

References

Arkin, A. P. (2001). Simulac and Deduce. Available via the World Wide Web at http:
//gobi.1lbl.gov/"aparkin/Stuff/Software.html.

Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J., and Oliphant, T. (2001). Numerical
Python. Available via the World Wide Web at http://www.numpy.org.

Barrett, D. J. and Silverman, R. E. (2001). SSH, the Secure Shell. O’Reilly & Associates,
Sebastopol, CA, USA.

Bray, D., Firth, C., Le Novere, N., and Shimizu, T. (2001). StochSim. Available via the World
Wide Web at http://www.zoo.cam.ac.uk/comp-cell/StochSim.html.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Extensible markup language (XML)
1.0, W3C recommendation 10-February-1998. Available via the World Wide Web at http:
//www.w3.org/TR/1998/REC-xm1-19980210.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons.

Falangan, D. (1999). Java"" in a Nutshell. O’Reilly & Associates, Sebastopol, CA, USA.

Ginkel, M., Kremling, A., Trankle, F., Gilles, E. D., and Zeitz, M. (2000). Application of
the process modeling tool ProMot to the modeling of metabolic networks. In Troch, I. and
Breitenecker, F., editors, Proceedings of the 3rd MATHMOD, pages 525-528.

Goryanin, 1. (2001). DBsolve: Software for metabolic, enzymatic and receptor-ligand bind-
ing simulation. Available via the World Wide Web at http://websites.ntl.com/~igor.
goryanin/.

Goryanin, 1., Hodgman, T. C., and Selkov, E. (1999). Mathematical simulation and analysis
of cellular metabolism and regulation. Bioinformatics, 15(9):749-758.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001a). Introduction to the Systems
Biology Workbench. Available via the World Wide Web at http://www.cds.caltech.edu/
erato/sbw/docs/intro.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001b). Systems Biology Markup
Language (SBML) Level 1: Structures and facilities for basic model definitions. Available via
the World Wide Web at http://www.cds.caltech.edu/erato.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., and Kitano, H. (2001c).
The ERATO Systems Biology Workbench: Architectural evolution. In Yi, T.-M., Hucka, M.,
Morohashi, M., and Kitano, H., editors, Proceedings of the Second International Conference
on Systems Biology, pages 352-361. Omnipress, Inc.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., and Kitano, H. (2002). The
ERATO Systems Biology Workbench: Enabling interaction and exchange between software
tools for computational biology. In Altman, R. B., Dunker, A. K., Hunker, L., Lauderdale, K.,
and Klein, T. E., editors, Pacific Symposium on Biocomputing 2002. World Scientific Press.

Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with
Gepasi 3. Trends in Biochemical Sciences, 22:361-363.

Mendes, P. (2001). Gepasi 3.21. Available via the World Wide Web at http://www.gepasi.
org.

Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in an intracellular
signalling pathway. Journal of Theoretical Biology, 192:117-128.

67

http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://www.numpy.org
http://www.zoo.cam.ac.uk/comp-cell/StochSim.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://websites.ntl.com/~igor.goryanin/
http://websites.ntl.com/~igor.goryanin/
http://www.cds.caltech.edu/erato/sbw/docs/intro
http://www.cds.caltech.edu/erato/sbw/docs/intro
http://www.cds.caltech.edu/erato
http://www.gepasi.org
http://www.gepasi.org

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J.-
H. S., Rohwer, J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of
the 9th International Meeting on Bio ThermoKinetics. Stellenbosch University Press.

Sauro, H. M. and Fell, D. A. (1991). SCAMP: A metabolic simulator and control analysis
program. Mathl. Comput. Modelling, 15:15-28.

Sauro, H. M., Hucka, M., Finney, A., and Bolouri, H. (2001). The Systems Biology Workbench
concept demonstrator: Design and implementation. Available via the World Wide Web at
http://www.cds.caltech.edu/erato/sbw/docs/detailed-design/.

Schaff, J., Slepchenko, B., and Loew, L. M. (2000). Physiological modeling with the Virtual
Cell framework. In Johnson, M. and Brand, L., editors, Methods in Enzymology, volume 321,
pages 1-23. Academic Press, San Diego.

Schaff, J., Slepchenko, B., Morgan, F., Wagner, J., Resasco, D., Shin, D., Choi, Y. S., Loew,
L., Carson, J., Cowan, A., Moraru, I., Watras, J., Teraski, M., and Fink, C. (2001). Virtual
Cell. Available via the World Wide Web at http://www.nrcam.uchc.edu.

Sun Microsystems (2001). Java Development Kit 1.3. Available via the World Wide Web at
http://java.sun.com/j2se/1.3/.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K.,
Tanida, S., Yugi, K., Venter, J. C., and Hutchison, C. (1999). E-Cell: Software environment
for whole cell simulation. Bioinformatics, 15(1):72-84.

Tomita, M., Nakayama, Y., Naito, Y., Shimizu, T., Hashimoto, K., Takahashi, K., Matsuzaki,
Y., Yugi, K., Miyoshi, F., Saito, Y., Kuroki, A., Ishida, T., Iwata, T., Yoneda, M., Kita,
M., Yamada, Y., Wang, E., Seno, S., Okayama, M., Kinoshita, A., Fujita, Y., Matsuo, R.,
Yanagihara, T., Watari, D., Ishinabe, S., and Miyamoto, S. (2001). E-Cell. Available via the
World Wide Web at http://www.e-cell.org/.

68

http://www.cds.caltech.edu/erato/sbw/docs/detailed-design/
http://www.nrcam.uchc.edu
http://java.sun.com/j2se/1.3/
http://www.e-cell.org/

	Introduction
	A Brief Tour of SBW
	Overview of SBW from a Programmer's Perspective

	A Tutorial on Programming with SBW in Java
	Preliminary Note about Data Types
	Preliminary Note about Accessing the APIs
	Calling a Known Module
	Implementing a Service
	Finding Services in a Given Category
	Calling a Known Service Having a Complex Return Value

	SBW Java API Reference
	Programming with the SBW Java API Library
	General Concepts in the SBW API
	Class: Module
	Class: ModuleDescriptor
	Class: ModuleImpl
	Class: SBW
	Class: SBWException
	Class: SBWListener
	Class: Service
	Class: ServiceDescriptor
	Class: ServiceMethod
	Class: Signature
	Class: SignatureElement
	Class: SignatureType

	SBW Java Low-Level API Reference
	Using the Low-Level API
	Identifiers
	Methods Required to Be Implemented by All Modules
	Methods Implemented by the SBW Broker
	Class: DataBlockWriter
	Class: DataBlockReader
	Interface: Receiver
	Interface: SBWLowLevel

	Complete Examples of Using the APIs
	Example of Implementing a Module
	Example of Calling a Service
	Example of Finding Multiple Modules in a Category

	The sbw-make-jar Program
	Setting Up SSH for Distributed SBW Operation
	

