
Systems Biology Workbench
C Programmer’s Manual

Andrew Finney, Michael Hucka, Herbert Sauro, Hamid Bolouri

{afinney,mhucka,hsauro,hbolouri}@cds.caltech.edu
Systems Biology Workbench Development Group

ERATO Kitano Systems Biology Project
Control and Dynamical Systems, MC 107-81

California Institute of Technology, Pasadena, CA 91125, USA

http://www.cds.caltech.edu/erato

Principal Investigators: John Doyle and Hiroaki Kitano

February 26, 2002

http://www.cds.caltech.edu/erato

Contents
1 Introduction 3
2 A Brief Tour of SBW 3

2.1 Overview of SBW from a Programmer’s Perspective 4
3 Foundations of SBW 6

3.1 Message Block Types . 6
3.2 Module Management Types . 6
3.3 Method Signatures . 7
3.4 Module Names . 8
3.5 Service Names . 8
3.6 Method Names . 8

4 Accessing the C API 8
4.1 gcc on Linux . 8
4.2 Visual C++ on Windows Platforms: 95, 2000, 98, ME and XP 9

5 Tutorials 10
5.1 Implementing a Service . 10
5.2 Calling a Known Module . 16
5.3 Creating a menu of services from a service category 19

6 C API Reference 22
6.1 Types . 22
6.2 Object and Array ownership . 22
6.3 Connecting and Disconnecting from the Broker 25
6.4 Module and Service Discovery functions . 26
6.5 Accessing Application Command Line . 27
6.6 Module and Service registration functions . 27
6.7 Functions for accessing module instances . 28
6.8 Functions for accessing services . 29
6.9 Functions for accessing and invoking methods . 29
6.10 Signatures . 31
6.11 Serialization of Data . 31
6.12 Exceptions . 33
6.13 Events . 33

A Standard Low Level Interfaces 34
A.1 Module System Service . 34
A.2 Broker System Service . 36

References 39

2

1 Introduction

The aims of this manual are twofold: teaching programmers how to interface C applications
to the ERATO Systems Biology Workbench (SBW), and providing a reference for the SBW
C API. This manual complements the overview of the SBW system provided by Hucka et al.
(2001a,c, 2002) and the description by Sauro et al. (2001) of a prototype SBW implementation.
This document assumes that the reader is familiar with the C programming language. Docu-
mentation on programming SBW in the C++ (Finney et al., 2001a) and Java (Finney et al.,
2001b) is also available.

SBW is a software integration environment that enables applications (potentially running on
separate machines) to learn about and communicate with each other. Applications can be
written to be providers of software services, or consumers, or both. The SBW communications
facilities allow heterogeneous packages to be connected together using a remote procedure call
mechanism; this mechanism uses a simple message-passing network protocol and allows either
synchronous or asynchronous invocations. The interfaces to SBW are encapsulated in client
libraries for different programming languages (currently C, C++, Delphi, Java, and Python,
with more anticipated), but the protocol is open and small, and developers may implement
their own interfaces to the system if they choose. The project is entirely open-source and all
specifications and implementations are freely and publicly available.

Frameworks for integrating disparate software packages are certainly not new. Compared to
other broker-based integration frameworks, SBW has the following combination of features:

• Free, open-source implementations available for all platforms;

• Availability today for Linux and Windows, with more platforms anticipated in the future;

• Comparatively simple APIs and data exchange protocol;

• Support for major programming and scripting languages and seamless interaction between
modules written in different languages;

• No need for a separately-compiled interface definition language (IDL); and

• Resource management performed by underlying services (which means, for example, that
there is no exposed object reference counting).

SBW is being developed as part of existing collaborations in the systems biology community
with the following software development groups: BioSpice (Arkin, 2001), DBsolve (Goryanin,
2001; Goryanin et al., 1999), E-CELL (Tomita et al., 1999, 2001), Gepasi (Mendes, 1997,
2001), Jarnac (Sauro and Fell, 1991; Sauro, 2000), ProMoT/DIVA (Ginkel et al., 2000),
StochSim (Bray et al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al.,
2000, 2001). These collaborations have already successfully established SBML, the Systems
Biology Markup Language (Hucka et al., 2001b), as an important emerging standard in this
field.

This document describes the C API for a system which is in active development. It will be
revised as that development proceeds.

2 A Brief Tour of SBW

The primary goal of SBW is to allow the integration of software components performing a
wide range of tasks common in computational biology, such as simulation, data visualization,
optimization, and bifurcation analysis. SBW is not designed to be in the foreground of either the
user’s or the programmer’s experience, but instead, to allow existing systems biology software
packages to easily and transparently access functionality from each other.

3

In more specific terms, SBW is a computational resource brokerage system. It allows the
interactive discovery and use of software resources. In the SBW scheme of things, software
resources are independent applications and are called modules. A module instance is a running
application or process. A module can implement one or more services. Services are interfaces
to the resources inside a module and consist of one or more methods (i.e., callable functions).

Figure 1: The overall organization of the Systems
Biology Workbench. Gray areas indicate SBW
components (libraries and the broker). To individ-
ual modules, communications appear to be direct
(dotted line), although they actually pass through
the broker.

Broker architectures are relatively common and
are considered to be a well-documented software
pattern (Buschmann et al., 1996). In SBW, the
remote service invocations are implemented us-
ing message passing, another well-known and
proven software technology. Communications
in message-passing systems take place as ex-
changes of structured data bundles—messages—
sent from one software entity to another over
a channel. Some messages may be requests to
perform an action, other messages may be no-
tifications or status reports. Because interac-
tions in a message-passing framework are de-
fined at the level of messages and protocols for
their exchange, it is easier to make the frame-
work neutral with respect to implementation
languages: modules can be written in any lan-
guage, as long as they can send, receive and
process appropriately-structured messages using
agreed-upon conventions. Figure 1 illustrates the overall SBW system organization.

2.1 Overview of SBW from a Programmer’s Perspective

The SBW APIs provide the following facilities:

1. Dynamic service and module discovery : The SBW Broker keeps track of modules, services
and service categories, and provides facilities for dynamically querying SBW about them.

2. Remote method invocation: The bread and butter of SBW is enabling one module to
invoke a service method in another module. If necessary, SBW will automatically start
an instance of a module whose services are requested.

3. Data serialization: Method invocations involve sending messages between modules, with
arguments and data packed into message streams. For some languages such as Java and
Python, the SBW library provides proxy objects that hide the message-passing, so that
to client programs, remote services appear as local objects whose methods can be invoked
like any other object method.

4. Exception handling : SBW provides facilities for dealing with exceptional conditions.

5. Event notification: Certain events in SBW, such as the startup or shutdown of an instance
of a module, are announced to all modules upon their occurrence.

6. Module, service and method registration: In order for a module to advertise its services
to others, it must first inform the Broker about them. The registration facilities allow a
module to record with the Broker the services that the module provides, the command
that should be used to start up the module on the fly, and other information. The SBW
Broker stores this in a disk file, so that the information provided by modules is persistent
between start-up and shutdown of the modules and the Broker.

4

2.1.1 Service Categories

Each service is described by a unique name, a humanly-readable name, and a service category.
Services in SBW are categorized hierarchically as a tree in which the leaves are services. Each
level in the hierarchy is named and can be uniquely described via a text string very much like
directory pathnames in Unix or Windows.

The purpose of this is to support a hierarchy of programming interfaces. Each level has an
associated, documented interface. Descendants inherit or extend the interface of their parents.
Categorizing services in this way allows other applications to find services with a known interface
without having to know about specific modules. New modules, by complying with a given
interface, can extend the behavior of existing applications without requiring those applications
to be rewritten.

To give an example, one could define a top-level category, “Analysis”, with a service interface
consisting of one method:

void doAnalysis(string SBML)

Then one could have a subcategory of “Analysis” called “Analysis/Simulation”, with a service
interface consisting of two methods:

void doAnalysis(String SBML)
void ReRun()

Service category names can consist of any sequence of non-control characters excluding \n, \
and / but including space. Service category strings as used in the API are sequences of one or
more service category level names separated by either \ or / characters.

2.1.2 Adapting Applications to Use SBW

We strove to create APIs that provide a natural interface in each of the different languages for
which we have implemented libraries so far. By “natural”, we mean that it uses a style and
features that programmers accustomed to that particular language should find familiar. We
hope that application developers will find it relatively easy to introduce SBW interoperability
into their software. To give some idea of what is involved, here is a summary of the steps a
developer would follow to adapt a particular application for use as a module in SBW:

1. Decide on the services that will be provided by the module to clients.

2. Categorize each service, using as a starting point the existing SBW service hierarchy.

3. For each service, define its methods along with their parameters and return value(s).

4. If necessary, implement the methods as they are intended to be seen by other modules.

5. Add calls in the application’s main routine to the SBW module registration methods as
described below.

6. Compile the application with the SBW API library (if appropriate for the programming
language in use).

The resulting application will be able to run in three modes: a regular, non-SBW mode; a
registration mode; and a module mode. By convention, the registration mode is invoked by
starting the module with the command-line argument -sbwregister; it tells SBW to contact
the Broker once, register the services declared by the module (if the module’s author so desires),
and exit. The module mode is invoked by starting the module with the command-line argument
-sbwmodule; it allows the module to run, connecting to SBW and making its services (if any)
available to other SBW modules. The non-SBW mode is invoked by not supplying either of
these arguments.

5

3 Foundations of SBW

This section introduces various features of SBW that are exposed through its programming
APIs.

3.1 Message Block Types

The arguments and return values of methods on services are encoded in message or data blocks.
Message blocks are heterogeneous collections of data using a simple set of data types consisting
of 32-bit integers, double-precision IEEE floating-point numbers, strings, bytes, boolean values,
arrays and lists.

The array types are essentially homogeneous collections of one type. The list types are hetero-
geneous collections of data or recursive substructures.

The message block types and their correspondence to Java, C, C++, Python, and Delphi types
is shown in table 1.

SBW
Signature Java C++ C Python Delphi

string java.lang.String std::string char * string string

int int Integer SBWInteger int integer

double double Double SBWDouble float double

boolean boolean bool SBWBoolean int boolean

byte byte unsigned char unsigned char string byte

array array std::vector a array array b SBWArray

or array

list java.util.List DataBlockWriter SBWDataBlockWriter * list SBWList

DataBlockReader SBWDataBlockReader *

Table 1: Data types supported in SBW and their corresponding programming language types. The “SBW
Signature” types are those permitted in service method signatures; they are described in Section 3.3. The
italicized names array and list represent the natural versions of these data types; i.e., in Java, arrays are
such things as “int[]”, “byte[]”, etc. Integer and SBWInteger are to defined to be a 32-bit signed
integer (the same as the primitive int and integer types in the other languages). Double and SBWDouble

are defined to be a double-precision floating-point number in IEEE 754 format (the same as the primitive
double type defined in the other languages). aIn the C++ library, std::vector is used for 1-D arrays and

raw C++ arrays are used for 2-D arrays. bIn Python, 1-D and 2-D arrays are implemented using the array

type from the Numerical Python package (Ascher et al., 2001).

3.2 Module Management Types

SBW manages various strategies for managing the lifetimes of module instances. Modules fall
into the following categories or types with respect to lifetime management:

3.2.1 Unique

A module instance is started on the first request for a module instance object in the API. All
subsequent requests for an instance are returned a reference to the existing module instance.

Typically these modules will provide simple functionality which does not require the module
to contain much state information.

6

3.2.2 Self-Managed

A new module instance is started on every request for a module instance object in the API.
Either the module instance itself or the requesting application decide when the broker should
disconnect from the module instance. Normally, when the broker disconnect from a module
instance, the module instance shuts down.

3.3 Method Signatures

The API uses strings called Method Signature Strings to define the names, arguments and
return types of service methods. (In C, a subset of Method Signatures, Argument Lists, are
used for the encoding and decoding of message blocks. The syntax of method signatures is
shown in Figure 2.

Letter ::= ‘a’..‘z’,‘A’..‘Z’
Digit ::= ‘0’..‘9’
Space ::= (‘\t’ | ‘ ’)+
SName ::= ‘_’* Letter (Letter | Digit | ‘_’)*
Type ::= ‘int’ | ‘double’ | ‘string’ | ‘boolean’ | ‘byte’ | ArrayType | ListType
ArrayType ::= Type Space? ‘[]’
ListType ::= ‘{’ Space? ArgList Space? ‘}’
ArgList ::= (Type [Space SName] (Space? ‘,’ Space? Type [Space SName])*)?
ReturnType ::= ‘void’ | Type
VarArgList ::= (Space? ArgList [Space? ‘,’ Space? ‘...’] Space?) | Space? ‘...’ Space?
Signature ::= ReturnType Space SName Space? ‘(’ VarArgList ‘)’

Figure 2: Permissible syntax of method signatures, defined using the version of EBNF notation (Extended
Backus-Naur Form) used in the XML specification (Bray et al., 1998). The meta symbols ’(’ and ’)’ group
the items they enclose, ’[’ and ’]’ signify that the enclosed content is optional, ’*’ means “zero or more
times”, and ’+’ means “one or more times”.

Signature is the signature for one method. The Type enumeration refers to the different
data block types. Table 1 shows the correspondence between these strings and programming
language data types. The character sequence ‘...’ indicates that the remainder of the data
block is not of a predetermined format; i.e., equivalent to a variable parameter sequence. A
ListType containing an empty ListContents indicates a list of arbitrary length and type.

Here are some examples of method signatures:

double f(double x)

a method that returns a double given a double value x.

int f(int[])

a method that returns an integer given a one dimensional array of integers.

{string name, double value} f(string)

a method that returns a string name and double value inside a list given a string argument.

{}[] f()

a method that returns an array of lists. The method takes no arguments. The content of the
lists is undefined.

void f(...)

a method that returns nothing given a variable argument list.

7

3.4 Module Names

Each module has two names: an identification name and a name for display. Module iden-
tification names are compared on a case-sensitive basis. The identification name should be
given so that it is unlikely to be equal to another module identification name. To achieve,
this the following syntax convention is proposed for these identification names: reverse domain
name ‘.’ module name. The reverse domain name is derived from a domain name owned or
affiliated to by the module developer. The reverse domain name just reverses the sequence
of names in the domain name string. An example of a module identification name would be
“edu.caltech.gibson”.

This scheme for module identification names is voluntary. The API will still work with other
naming schemes. The objective is to make module names unique to one machine. A module
name has to be combined with location information, e.g. IP address, to construct a module
name unique to the world.

3.5 Service Names

Service identification names have the SName syntax as defined in Section 3.3. Service identifica-
tion names are compared on a case sensitive basis. By convention service identification names
start with a capital letter.

3.6 Method Names

Method names have the SName syntax as defined in Section 3.3. By convention method names
start with a lower case letter. Methods signatures are compared using the same scheme as
C++ and Java i.e. methods on the same service can have the same name but methods with
the same name must have different parameter types. Method names are not compared outside
the context of a signature.

4 Accessing the C API

This section describes how to use the Visual C++ Interactive Development Environment on
Windows and gcc on Linux to develop SBW modules.

The C API is defined in the sbwc.h include file which should be included in C source files which
use the C++ API.

4.1 gcc on Linux

To compile SBW under Linux, you need a recent version of the Linux kernel (we use 2.4.x),
and a recent version of GCC (we use 2.96-85).

Figure 3 shows a template Makefile that can be used as a starting point for a project Makefile.
You may wish to copy this text into a file called Makefile in your module source code directory.
Three things need to be modified in this file. First, the value of sbw root needs to be changed
to the path to the root of the SBW installation directory (the directory that contains the SBW
“lib”, “include”, etc., directories). Second, the value of module name needs to be changed to
the desired name of your compiled module. Finally, the value of objs needs to be changed to
a list of .o files that make up your module.

The template makefile in Figure 3 illustrates the main points about compiling SBW:

• Make sure to use the flags -DLINUX -D GNU SOURCE when compiling either C++ or C
source code files.

8

1 # Configuration variables.

2
3 sbw_root = /path/to/SBW
4 module_name = modulename
5 objs = list of .o files
6
7 # Common directives -- these are independent of the application.

8
9 libdir = $(sbw_root)/lib

10 includedir = $(sbw_root)/include
11
12 cflags_regular = -O
13 cflags_debug = -g
14
15 ldflags_regular = -lpthread -lsbw
16 ldflags_debug = -g -lpthread -lsbw-debug
17
18 default:
19 make regular
20
21 regular:
22 make CFLAGS="$(cflags_regular)" LDFLAGS="$(ldflags_regular)" $(module_name)
23
24 debug:
25 make CFLAGS="$(cflags_debug)" LDFLAGS="$(ldflags_debug)" $(module_name)
26
27 $(module_name): $(objs)
28 g++ $(LDFLAGS) -L$(libdir) -Xlinker -rpath -Xlinker $(libdir) \textbackslash{}
29 -o $(module_name) $(objs)
30
31 .cpp.o:
32 g++ -Wall $(CFLAGS) -DLINUX -D_GNU_SOURCE -I. -I$(includedir) -c $<
33
34 .c.o:
35 gcc -Wall $(CFLAGS) -DLINUX -D_GNU_SOURCE -I. -I$(includedir) -c $<
36
37 clean:;
38 -rm -f $(objs)

Figure 3: Template makefile for use with new SBW modules.

• Use the -I flag to tell the compiler where to find the SBW include files.

• Make sure the the final link step includes the SBW library (using -lsbw) and the Pthreads
library (using -lpthread), and also that the linker records the path to the SBW library
so that at run-time, the module will find it.

The template makefile has two directives for building SBW, one for a regular (optimized, non-
debug) version and one for a debugging version of the module. These can be invoked simply
by running make to compile a regular version of the module and make debug to compile a
debugging version of the module.

4.2 Visual C++ on Windows Platforms: 95, 2000, 98, ME and XP

There are debug and release versions of the SBW library. The release library is provided in the
sbw.lib and sbw.dll files. The debug library is provided in the sbwd.lib and sbwd.dll files.

Visual C++ projects that use SBW should include sbwc.h and link with sbw.lib or sbwd.lib.
This can be achieved first by changing Visual C++ options as follows:

1. select the “Options...” menu item on the main “Tools” menu

9

2. the “Options” dialog box appears.

3. select the “directories” tab

4. select “include files” from the “show directories for” list

5. add a new directory: the directory include immediately below the SBW installation root
directory

6. select “library files” from the “show directories for” list

7. add a new directory: the directory lib immediately below the SBW installation root
directory

8. select the “OK” button

When modifying a Visual C++ project to use SBW perform the following operations:

1. select the menu item “Settings...” on the main “Project” menu.

2. the “Project Settings” dialog appears

3. in the drop down list “Settings For:” select “Win32 Debug”

4. select the “Link” tab

5. in the “Object/library modules:” text field append “ sbwd.lib”. Ensure that there is a
space between the existing contents of the list and “sbwd.lib”.

6. in the drop down list “Settings For:” select “Win32 Release”

7. select the “Link” tab

8. in the “Object/library modules:” test field append “ sbw.lib”. Ensure that there is a
space between the existing contents of the list and “sbw.lib”.

9. select the “OK” button

5 Tutorials

In this section, we describe various programming scenarios that use the SBW C API. Section 5.1
describes how to implement a module that provides services and section 5.2 describes how to
write an application which calls SBW services. You will need to build and register the service
provider before running the calling application. Section 5.3 describes how to create a simple
menu of services from a service category.

The source code for these tutorials is available in the SBW installation and CVS directory in:

src/tutorials/C

5.1 Implementing a Service

This section describes the complete implementation of a simple module implementing the service
called in Section 5.2.

The code for this example is contained in the directory

src/tutorials/C/TrigServerModule

10

This code follows the typical pattern of implementing an executable which can both provide
services (module mode) and register those services with the broker (register mode).

The module presented in this example provides one service ”trig”. The interface for this service
is as follows:

double sin(double)

The code is as follows:

#ifdef WIN32
#include "windows.h"
#endif

#include "SBWC.h"
#include "math.h"

/*

* sinMethod

* sin method implementation for trig service on module edu.caltech.trig

* (all method implementations in C have the same C argument and result

* types as this function) this method has the SBW signature:

* double sin(double)

*/

void sinMethod(
SBWInteger from, /* id of module calling this method */

SBWDataBlockReader *argObject, /* pointer to object containing argument data */

SBWDataBlockWriter *resultObject, /* pointer to object which will contain the

result data */

void *userData /* data supplied to SBW via

SBWModuleImplSetHandler */)
{

SBWDouble arg, result; /* variables to hold arguments and result */

/* extract argument from argument data object */

if (!SBWRead(argObject, "double", &arg))
return;

/* calculate result */

result = sin(arg);

/* store result into result data object */

SBWWrite(resultObject, "double", result);
}

/*

* cserver

* implementation of SBW module edu.caltech.trig

* arguments: argc and argv same as those supplied to standard C main function

* result: int - 0 => SBW error has occurred, 1 => successful completion

*/

int cserver(int argc, char* argv[])
{

if (!SBWCreateModuleImpl(
"edu.caltech.trig", /* module identification */

"trigonometry server C implementation", /* humanly readable name */

SBW_SelfManagedModule, /* management scheme */

"does trigonometry" /* module help text */))
return 0 ;

if (!SBWModuleImplAddService(
"trig", /* service identification */

"trigonometry", /* service humanly readable name */

"trig", /* service category */

"does trigonometry" /* service help text */))

11

return 0;

if (!SBWModuleImplSetHandler(
"trig", /* service identification */

sinMethod, /* method implementation function */

0, /* implementation data */

"double sin(double)", /* method signature */

0, /* synchronized 0 implies false */

"sin" /* method help text */))
return 0 ;

/* connect to broker providing services */

if (!SBWModuleImplRun(argc, argv, 1)) /* 1 => wait for disconnect */

return 0 ;

return 1 ;
}

/*

* module entry point WinMain/main

* On windows using WinMain as an entry point means that the executable can be an

* invisible process rather than a console application.

* arguments: in windows case all are ignored, see windows documentation

* for details of arguments. In linux case standard main arguments

* result: int - -1 if error occurred 0 otherwise.

*/

#if defined(WIN32)
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int nCmdShow)
{

int argc ;
char **argv ;

SBWWindowsExtractCommandLine(&argc, &argv); /* get windows commandline */

#elif defined(linux)
int main(int argc, char* argv[])
{
#endif

if (!cserver(argc, argv))
{

#ifdef WIN32
/* display error dialog */

MessageBox(
NULL, SBWExceptionGetMessage(), "Trig", MB_OK | MB_ICONEXCLAMATION);

#else
fprintf(stderr, "cserver: %s\n", SBWExceptionGetMessage());

#endif
return -1;

}

return 0;
}

5.1.1 Portable application entry point

Typically a module will either have a graphical user interface or will be invisible. In either case
on Windows the module will not have the ANSI standard application entry point function main
but use WinMain instead. The example code includes some portable code to ensure that the
command line for the module is available in standard form on Linux and Windows platforms:

#if defined(WIN32)
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int nCmdShow)

12

{
int argc ;
char **argv ;

SBWWindowsExtractCommandLine(&argc, &argv); /* get windows commandline */

#elif defined(linux)
int main(int argc, char* argv[])
{
#endif

In the Windows case the function SBWWindowsExtractCommandLine extracts the command line.
This function is only available on the windows platform.

5.1.2 Creating method implementations

First let us create an underlying implementation of the service functionality. In C each method
is implemented in a separate function. For this example the sin method is implemented by a
function with the following C signature:

void sinMethod(
SBWInteger from,
SBWDataBlockReader *argObject,
SBWDataBlockWriter *resultObject,
void *userData)

The from parameter gives the identity of the calling module instance. argObject contains
argument data for the method. resultObject will contain the result data from the function.
userData is arbitrary data that is passed to the SBW API with the function.

The first operation in this function is to extract the arguments to the method from the container
containing the arguments:

SBWRead(argObject, "double", &arg)

In this call the second parameter is a string containing comma separated types. This sequence
of types indicates the types of the arguments to the method. For each argument to the method
a pointer should be passed to SBWRead. Each of these pointers points to a variable which will
contain the argument data. These variables should match the types given in the type sequence.
The type sequence string should conform to the ArgumentList production rule in the syntax
given in section 3.3.

After calculating the method result value the function then stores the value in the result con-
tainer:

SBWWrite(resultObject, "double", result)

The second parameter to this function is a string containing one type: the type of the return
value. The third parameter is a value corresponding to that type. The sinMethod function
completes by returning the pointer to the result container.

Both SBWWrite and SBWRead return the boolean value false if an error occurs during their
execution. If an error occurs during the execution of SBWRead the sinMethod function simply
returns immediately.

A function like sinMethod, that implements a SBW method can raise an error condition by
calling SBWSetException. SBWSetException has 2 char * parameters. The first parameter
is a message to be displayed to a user. The second parameter is a message for a developer to
understand the background to the error.

In many situations, services need to invoke methods on a module instance which previously
called the service. For example a simulator may wish to callback a module when a simula-
tion has completed. This can be achieved by storing or using the from argument to method

13

implementation functions.

To disconnect a module from the broker from within a method function call use

SBWSignalDisconnect();

instead of

SBWDisconnect();

5.1.3 Creating a server module

To connect the previously defined method to SBW we need to create a module implementation
containing a service implementation and attach the method to the service implementation.

The code to perform this in our example is contained in the function cserver. This function
takes as arguments argc and argv arguments passed to the executable. cserver returns 0 if
an error occurs, 1 if the function is successful. All the API calls in cserver return boolean
results: false indicating an error and true indicating success.

cserver provides the code for both the register and module modes of operation for the module.
The API does not require the developer to make a distinction between the two modes. cserver
does not have any conditional code: it simply passes argc and argv which contain mode flags
to the API.

The first part of cserver is the creation of a module implementation object:

SBWCreateModuleImpl(
"edu.caltech.trig",
"trigonometry server C implementation",
SBW_SelfManagedModule,
"does trigonometry")

In this call the first parameter is the identifier for the module which should be unique amoungst
all modules installed. The SBW development group recommend that developers use the reversed
internet domain name scheme used in this example. The second parameter is the humanly
readable name for the module and can be potentially displayed to the user. The third parameter
is the module type, which can be SBW SelfManagedModule or SBW UniqueModule. The last
parameter is a help string which describes the module to users.

SBW UniqueModule indicates that one module instance will be shared by all applications which
access the module. SBW SelfManagedModule indicates that a new module instance will be
created every time a module is accessed through SBWGetModuleInstance and that either the
module or the application accessing the module will decide when to shutdown the module. An
application shuts down a module using SBWModuleShutdown as shown in section 5.2.

Next we need to add the service to the ModuleImpl object:

SBWModuleImplAddService(
"trig",
"trigonometry",
"trig",
"does trigonometry")

The first argument is the identification name for the service and must unique amongst the
services implemented by this module. The second argument is a humanly readable name for
the service. The third argument is the category for the service. The last argument is a help
string for the service.

The next step is to attach the sinMethod method function to the service:

SBWModuleImplSetHandler("trig", sinMethod, 0, "double sin(double)", 0, "sin")

14

The first parameter to the SBWModuleImplSetHandler function is the identification name of the
service. The second parameter is a pointer to the function that implements the method. The
third parameter is data to be passed to the method implementation function when it is called.
The fourth parameter is the signature of the method using the syntax defined in Section 3.3.
The fifth parameter is a boolean value. The methods that are registered with this value set
true (1) will not be invoked concurrently with each other. The final parameter is a help string
for the method.

The final part of cserver is the call:

SBWModuleImplRun(argc, argv, 1)

The SBWModuleImplRun function either registers the module with the broker or starts the
provision of services by this module. The first two parameters contain data on the arguments
passed to the application on the command line and enables the API to determine whether the
module is registering or providing services.

The last parameter to SBWModuleImplRun is a boolean value which indicates whether this
function, in module mode, blocks until the module is shutdown. This value is typically left
true (1) however if the module, for example, needs to run a message loop to service a UI, then
it might be appropriate to set this parameter to false (0) and place the message loop after the
SBWModuleImplRun call so that the module can process both UI and SBW method calls. In
this case it is important to note that service provision will end as soon as the main or WinMain
function terminates.

5.1.4 Running and Debugging a Module

The executable described here takes a single command line argument which can either be
“-sbwregister” or “-sbwmodule”. Any other arguments are ignored. If the argument is “-
sbwregister” the module simply registers itself and terminates. Before calling this module the
module should be first registered with SBW by running with the “-sbwregister” argument on
the command line. The module should be re-registered whenever the following changes:

• module executable location

• module display name

• module management mode

• service names

• service display names

• service categorization

As this module is self managed the module will now be automatically executed whenever another
module executes the API function

SBWGetModuleInstance("edu.caltech.trig")

The broker launches the module executable with “-sbwmodule” as the single command line
argument and the module runs in module mode providing services. To achieve this a client
application is required. Section 5.2 describes a simple C client for the module described here.
The SBW Python extension can be used as a generic client for all modules. In fact for some
modules specific clients will not be appropriate.

If the module is registered as running in the unique management mode then the broker will
launch the module once, if it has not already connected to the broker, and all subsequent
requests refer to that first instance of the module.

15

To debug a module which is designed to be self managed temporarily change the management
mode from SBW SelfManagedModule to SBW UniqueModule and re-register the module. Then
set breakpoints in the method implementation functions and run the executable from the de-
bugger passing the argument ”-sbwmodule”. For normal use restore the management mode to
SBW SelfManagedModule and re-register.

5.2 Calling a Known Module

The simplest use of SBW is to invoke services on a module. And the simplest case of invoking
services on a module in SBW is when the module and service identification names are known
by the programmer in advance. A module identification name is unique to a given computer.
A service identification name is unique to the module. This section gives an example of calling
service “trig” on module “edu.caltech.trig”. An implementation of this service is described in
Section 5.1.

The complete code for this example is contained in the directory

src/tutorials/C/SimpleTrigClientModule

in the SBW installation and CVS tree.

This executable simply takes a single command line argument, a floating point number, and
passes it to the “trig” service to compute the sin of the argument. The executable then prints
the computed value.

The complete code for the example follows:

#include "stdio.h"
#include "SBWC.h"

/* callTrig

* starts new instance of trig, fetches and stores identity of trig module,

* trig service and sin method. Then calls the sin method on the trig service

* given the value in the given string argument.

* returns: SBWBoolean - 1 => successful, 0 => error occurred

*/

SBWBoolean callTrig(const char *valueStr)
{

SBWInteger trigModuleId, trigServiceId, sinMethodId ;
SBWDouble argument, result ;
float x = 0, y ;

/* connect to SBW Broker */

if (!SBWConnect())
return 0 ;

/* fetch trig module identity */

trigModuleId = SBWGetModuleInstance("edu.caltech.trig");

if (trigModuleId == -1)
return 0 ;

/* fetch service identity */

trigServiceId = SBWModuleFindServiceByName(trigModuleId, "trig");

if (trigServiceId == -1)
return 0 ;

/* fetch method identity */

sinMethodId = SBWServiceGetMethod(trigModuleId, trigServiceId, "sin");

if (sinMethodId == -1)
return 0;

16

/* convert string to float */

sscanf(valueStr, "%f", &x);
argument = x ;

/* call sin method */

if (!SBWMethodCall(
trigModuleId,
trigServiceId,
sinMethodId,
"double sin(double)", /* method signature used to decode variable

arguments and result */

argument, /* variable number of arguments (only one in this case) */

&result))
{

return 0;
}

/* print result float */

y = result ;
printf("%g\n", y);

/* disconnect from trig module */

if (!SBWModuleShutdown(trigModuleId))
return 0 ;

/* disconnect from SBW broker */

SBWDisconnect();

return 1;
}

int main(int argc, char* argv[])
{

if (argc == 1)
{

fprintf(stderr, "cserver: needs one argument");
return -1;

}

if (!callTrig(argv[1]))
{

fprintf(stderr, "cserver: %s\n", SBWExceptionGetMessage());
return -1;

}

return 0;
}

In this example the callTrig function connects to SBW, using the SBWConnect function,
executes one method on another module, and then disconnects from SBW, by invoking the
SBWDisconnect function. This is artificial, typically an application will either connect to SBW
for its entire runtime or for at least a much larger sequence of calls on other modules.

In the C API certain values that API functions return indicate an error or exception has
occurred during the function’s execution. The actual value used depends on the function
called. An error message corresponding to the exception can be obtained by calling

SBWExceptionGetMessage();

In this code, we are assuming that there is a module identified as “edu.caltech.trig” which has
a service identified as “trig”. We are invoking the sin method on this service. The first step
is to obtain the identity of an instance of the module. This is performed by the following code
fragment:

17

trigModuleId = SBWGetModuleInstance("edu.caltech.trig");

Whether or not a new module instance is started by these calls depends on the type of the
module. If the module is self managed then a new module instance is always started. If the
module is unique then the identity of the existing module instance is returned, if no such module
instance exists a new instance is started.

The next step is to obtain the identity of the service on the module instance, using the module
instance identity obtained in the previous call. This is performed by the following code:

trigServiceId = SBWModuleFindServiceByName(trigModuleId, "trig");

Now we can consider calling the sin method on this service. First we obtain the identity of the
method which we would like to call, using the service and module identities we have obtained:

sinMethodId = SBWServiceGetMethod(trigModuleId, trigServiceId, "sin");

All these functions to obtain the identities of SBW objects return -1 if an error occurred during
their execution.

We can now invoke the method. To invoke the method in C, we use the following code:

SBWMethodCall(
trigModuleId,
trigServiceId,
sinMethodId,
"double sin(double)",
argument,
&result)

The first three parameters indicate the method which we would like to call. The fourth param-
eter is the signature of the method which is used to interpret the remaining parameters which
can vary in number and type. The remaining parameters up to and including the penultimate
parameter are the arguments to be passed to the method. In this example there is only one
argument: argument. The last parameter is a pointer to a variable in which the method return
value is to be stored.

The C API uses the type SBWBoolean to represent boolean values. SBWBoolean is just a type
alias of int. As by C convention 0 represents false and any non zero value represents true.
SBWMethodCall returns boolean value to indicate whether it was successful or not.

SBWMethodCall call can return false, i.e. indicate an error, if the method implementation on
the called module raises an error during the execution of the method. These errors are called
application exceptions.

When a module instance does not have its own free standing GUI frame and the module is
self managed the broker connection to the module instance should be terminated when a client
application has finished using the module instance. This applies in our example configuration.
In our example code we terminate the broker connection to the module instance after calling
the sin method, using the following code:

SBWModuleShutdown(trigModuleId)

This function returns a boolean value to indicate whether it was successful or not.

After this the callTrig function finishes correctly by terminating the connection to the broker
using the call:

SBWDisconnect()

The above code shows how a method is called on a blocking basis; i.e., SBWMethodCall waits
to receive a response from the method implementation. In SBW, it is possible to call a method

18

on a non-blocking basis; i.e., the following API function returns as soon as a message is sent to
the method implementation:

SBWBoolean SBWMethodSend(
SBWInteger moduleInstanceId,
SBWInteger serviceId,
SBWInteger method,
const char *signature,
...);

The variable parameter list should not contain a parameter for the method return value.

5.3 Creating a menu of services from a service category

The following tutorial describes a simple application which displays a menu of services to the
user, inputs the user’s selection and a method on the selection. The services displayed are all
in the same category. The application assumes that all the services in this category support
the same method.

In this example we have to use the service ”Analysis” which is used by a number of existing
modules. All services in this category implement the method void doAnalysis(string sbml)
which takes a string containing SBML and performs some function on the given model. It is
assumed that the service display name for the service will indicate to the user what that
functionality is. It is also assumed that the module instances providing the selected service is
a free standing GUI that should not be shutdown by the menu application after calling the
doAnalysis method.

The complete code for this example is contained in the directory

src/tutorials/C/MenuClientModule

in the SBW installation and CVS tree.

The complete code for this example is as follows:

#include <string.h>
#include <malloc.h>
#include <stdio.h>
#include "SBWC.h"

SBWBoolean doit(int argc, char* argv[])
{

FILE *sbmlSource;
char *sbml = NULL;
int size = 1000;
int i = 0 ;
int total = 0;
SBWServiceDescriptor *serviceDescriptors;
SBWInteger module, service, method, numOfServiceDescriptors;

if (argc < 2)
{

printf("usage: %s <filename>\n", argv[0]);
return 1;

}

// read file
sbmlSource = fopen(argv[1], "r");

if (!sbmlSource)
{

printf("unable to open file %s\n", argv[1]);
return 1;

19

}

while(!feof(sbmlSource))
{

char *newBuffer = malloc(total + size);

if (sbml != NULL)
strncpy(newBuffer, sbml, total);

sbml = newBuffer ;
/* Attempt to read in 1000 bytes: */

total += fread(sbml + total, sizeof(char), size, sbmlSource);

if (ferror(sbmlSource))
{

printf("Problem reading SBML");
return 1;

}
}

fclose(sbmlSource);
sbml[total] = ’\0’;

// connect to SBW broker
if (!SBWConnect())

return 0;

// query broker for services in Analysis category
serviceDescriptors = SBWFindServices("Analysis", &numOfServiceDescriptors, 1);

if (serviceDescriptors == NULL)
return 0;

// create menu
while (i != numOfServiceDescriptors)
{

printf("%d %s\n", i, serviceDescriptors[i].serviceDisplayName);
i++;

}

printf("\nType number to select service\n") ;

// get user response
scanf("%d", &i);

// check response
if (i < 0 || i >= numOfServiceDescriptors)
{

printf("Incorrect selection\n");
SBWDisconnect();
return 1;

}

// locate/create module instance based on selected service
if (!SBWGetServiceInModuleInstance(serviceDescriptors + i, &module, &service))

return 0;

SBWFreeServiceDescriptorArray(numOfServiceDescriptors, serviceDescriptors);

// locate method
method = SBWServiceGetMethod(module, service, "void doAnalysis(string)");

if (method == -1)
return 0;

20

// call method
if (!SBWMethodCall(module, service, method, "void doAnalysis(string)", sbml))

return 0;

// disconnect from broker
SBWDisconnect();

return 1;
}

int main(int argc, char* argv[])
{

if (!doit(argc, argv))
{

printf("Exception:\n");
printf(SBWExceptionGetMessage());
printf("\n");
printf(SBWExceptionGetDetailedMessage());
printf("\n");

}
}

The code up to the point at which the application connects to the broker simply loads the
contents of a file, given as a command line argument, into a string buffer pointed to by sbml.
After connecting the following code fetches information on services in the ”Analysis” category:

serviceDescriptors = SBWFindServices("Analysis", &numOfServiceDescriptors, 1);

if (serviceDescriptors == NULL)
return 0;

where the argument variables are defined as

SBWServiceDescriptor *serviceDescriptors;
SBWInteger numOfServiceDescriptors;

SBWServiceDescriptor structures provide information on the services potentially provided by
registered modules and don’t represent services on module instances. The application uses these
objects to create a menu, on standard output, of the display names of the described services as
follows:

while (i != numOfServiceDescriptors)
{

printf("%d %s\n", i, serviceDescriptors[i].serviceDisplayName);
i++;

}

where i is initially 0.

The application then inputs and checks the users response as follows:

scanf("%d", &i);

if (i < 0 || i >= numOfServiceDescriptors)
{

printf("Incorrect selection\n");
SBWDisconnect();
return 1;

}

The variable i now contains the index of the service that the user has selected. We now obtain
a numeric service identifier for the service represented by the selected SBWServiceDescriptor
as follows:

21

if (!SBWGetServiceInModuleInstance(serviceDescriptors + i, &module, &service))
return 0;

where the new argument variables are defined as

SBWInteger module, service;

The function SBWGetServiceInModuleInstance creates a module instance that implements
the described service and returns a reference to that service on the new module instance. In
short it starts with a description of a service and returns an instance of that service.

The array of SBWServiceDescriptor can now be destroyed as its no longer required:

SBWFreeServiceDescriptorArray(numOfServiceDescriptors, serviceDescriptors);

Now we have a reference to a service we can call the doAnalysis method on it as described in
the previous tutorial:

method = SBWServiceGetMethod(module, service, "void doAnalysis(string)");

if (method == -1)
return 0;

if (!SBWMethodCall(module, service, method, "void doAnalysis(string)", sbml))
return 0;

The application finishes by disconnecting from the broker and terminating.

6 C API Reference

6.1 Types

The C API uses the types shown in tables 2, 3, 4, and 5.

6.2 Object and Array ownership

In the C API all the objects returned to the calling environment are owned by the calling
environment. All arguments passed to the C API remain in the ownership of the calling
environment. In short the API caller is responsible for recovering all memory allocated by the
caller and returned to the caller by the SBW API.

The following functions to recover memory are part of the C API:

void SBWFree(void *)

this function recovers the memory used by a single object or a single dimension array returned
by the C API. Single dimension arrays of char * should be recovered using SBWFree2DArray.

void SBWFree2DArray(int xSize, void **)

This function recovers the memory used by a 2D array returned by the C API. Single dimension
arrays of char * should be recovered using this function. xSize is the size of the first dimension
of the array.

void SBWFreeServiceDescriptor(SBWServiceDescriptor *)

this function frees a single service descriptor structure

void SBWFreeServiceDescriptorArray(SBWInteger size, SBWServiceDescriptor *)

22

Type name Definition

SBWModuleDescriptor

typedef struct
{

char *name; /* for identification */

char *displayName;
SBWModuleManagementType managementType ;
char *commandLine ; /* to start the module */

char *help ;
} SBWModuleDescriptor;

stores information contained in the registry for a given module

SBWServiceDescriptor

typedef struct
{

char *serviceName; /* for identification */

char *serviceDisplayName;
char *serviceCategory;
SBWModuleDescriptor module;
char *help;

} SBWServiceDescriptor ;

stores information contained in the registry for a given module

SBWBoolean 32 bit integer holding a boolean value, 0 for false, true otherwise.
SBWInteger This is an signed 32bit integer
SBWDouble This is a 64 bit IEEE double precision floating point number

SBWDataBlockWriter

This is a container for data to be transmitted out
of a module.
Operations on SBWDataBlockWriter are defined
in section 6.11.1.

SBWDataBlockReader

This is a container for data to be received by a
module.
Operations on SBWDataBlockReader are defined
in section 6.11.1.

SBWSignature Contains the structure of a signature
SBWSignatureElement Contains type and possibly the name of an argument
SBWSignatureType Contains information of a type in a signature

Table 2: C API scalar and structure types

this function frees an array of service descriptor structures; size is the number of descriptors
in the array.

void SBWFreeModuleDescriptor(SBWServiceDescriptor *)

this function frees a single service descriptor structure

void SBWFreeModuleDescriptorArray(SBWInteger size, SBWServiceDescriptor *)

this function frees an array of service descriptor structures; size is the number of descriptors
in the array.

void SBWFreeSBWDataBlockWriter(SBWDataBlockWriter *)

this function frees a SBWDataBlockWriter structure

23

Type name Definition

SBWExceptionType

An enumeration of exception types

typedef enum sbwExceptionCode
{

SBWApplicationExceptionCode = 0,
SBWRawExceptionCode = 1,
SBWCommunicationExceptionCode = 2,
SBWModuleStartExceptionCode = 3,
SBWTypeMismatchExceptionCode = 4,
SBWMethodSignatureNotCompatableExceptionCode = 5,
SBWIncorrectModuleIdentifierSyntaxExceptionCode = 6,
SBWIncorrectCategorySyntaxExceptionCode = 7,
SBWServiceNameIsNotUniqueToModuleExceptionCode = 8,
SBWServiceIsNotFoundExceptionCode = 9,
SBWMethodTypeNotBlockTypeExceptionCode = 10,
SBWMethodAmbiguousExceptionCode = 11,
SBWUnsupportedObjectTypeExceptionCode = 12,
SBWMethodNotFoundExceptionCode = 13,
SBWSignatureSyntaxExceptionCode = 14,
SBWModuleDefinitionExceptionCode = 15,
SBWModuleNotFoundExceptionCode = 16,
SBWUnknownExceptionCode = ~0

} SBWExceptionType ;

Table 3: The C API Exception Enumeration type

Type name Definition

SBWModuleManagementType

An enumeration of the various management modes.

typedef enum sbwmoduleManagementType
{

SBW_UniqueModule = 0,
SBW_SelfManagedModule = 1

} SBWModuleManagementType;

SBWDataBlockType

An enumeration of the various data block types.

typedef enum sbwDataBlockType {
SBWIntegerType, SBWDoubleType,
SBWStringType, SBWArrayType,
SBWListType, SBWBooleanType,
SBWByteType, SBWTerminateType,
SBWErrorType, SBWVoidType
} SBWDataBlockType;

where SBWTerminate marks the end of the data block
and SBWErrorType is returned by functions when an
error occurs.

Table 4: The C API SBWModuleManagementType and SBWDataBlockType Enumeration Types

void SBWFreeSBWDataBlockReader(SBWDataBlockReader *)

this function frees a SBWDataBlockReader structure

void SBWFreeSBWSignature(SBWSignature *)

this function frees a SBWSignature structure

void SBWFreeSBWSignatureElementArray(SBWInteger size, SBWSignatureElement **)

24

Type name Definition

SBWHandler

typedef void (*SBWHandler)(
SBWInteger from,
SBWDataBlockReader *args,
SBWDataBlockWriter *result,
void *userData);

This type defines the form of method handlers for the C API. from
is the numeric identifier of the module calling this method. args
contains the arguments to the method. userData is a value passed
to the API when the Handler is attached to a service. Functions
of this type are expected to put the result data into the container
result. Exception data should be passed to the library by calling
the SBWSetException function within the function.

SBWModuleListener

typedef void (*SBWModuleListener)
(SBWInteger moduleInstanceIdentifier);

This type defines the form of module event callbacks for the C API.
moduleInstanceIdentifier is the numeric identifier of a module.
See section 6.13 for details of how to attach functions of this type
to the SBW API.

SBWSimpleListener
typedef void (*SBWSimpleListener)();

This type defines the form of simple event callbacks for the C API.
See section 6.13 for details of how to attach functions of this type
to the SBW API.

Table 5: C API function types

this function frees a SBWSignatureElement array; size is the number of signature arguments
in the array.

void SBWFreeSBWSignatureType(SBWSignatureType *)

this function frees a SBWSignatureType structure

6.3 Connecting and Disconnecting from the Broker

The following functions are part of the C API:

char *SBWGetVersion()

returns the version string of the C/C++ API library.

SBWBoolean SBWConnect()

connects this application to the SBW system as a module that does not provide services. returns
false if an exception occurs, true otherwise.

void SBWDisconnect()

notifies the SBW system that this application process is no longer available to provide service
and does not need to consume services. This function returns only when the library has
disconnected from the broker.

void SBWWaitForDisconnect()

25

This function returns only when the library has disconnected from the broker.

void SBWSignalDisconnect()

notifies the SBW system that this application process is no longer available to provide, and
does not need to consume services and then returns immediately.

6.4 Module and Service Discovery functions

The following functions are part of the C API:

SBWInteger SBWGetModuleInstance(const char *identificationName)

returns the module identification number for an instance of a module with a given identification
name. returns -1 if an exception occurs.

Whether this function starts a new module instance depends on the management type of the
module.

SBWInteger SBWGetThisModule()

returns the module identification number for this module.

SBWServiceDescriptor *SBWFindServices(
const char *serviceCategory, SBWInteger *numberOfServices, SBWBoolean recursive)

returns an array of service records for all the services registered with the SBW system in
the given category. returns null when an exception occurs. The integer pointed to by the
numberOfServices argument, is set to the number of elements in the returned array.

If recursive is true then this function returns all the services in this category and its subcat-
egories. If recursive is false then this function returns only the services in this category and
not those in its subcategories.

SBWBoolean SBWGetServiceInModuleInstance(
SBWServiceDescriptor *service,
SBWInteger *moduleIdentifier,
SBWInteger *serviceIdentifier)

sets the integer pointed to by moduleIdentifier to the identifier of an instance of the mod-
ule described in the service descriptor. This function sets the integer pointed to by the
serviceIdentifier argument, to the service, on the module instance, that is described in
the service descriptor. This function returns false if an exception occurs.

Whether this function starts a new module instance depends on the management type of the
module.

char **SBWGetServiceCategories(
const char *serviceCategory, SBWInteger *numberOfCategories)

returns an array of the service categories registered with the SBW system in the given cate-
gory and subcategories. Returns null when an exception occurs. The integer pointed to by
numberOfCategories is set to the number of elements in the returned array. Use the function
SBWFree2DArray to recover the result.

SBWInteger *SBWGetExistingNamedModuleInstances(
const char *moduleIdName, SBWInteger *numberOfModuleInstances)

returns an array of module identifiers for running module instances with identification name
moduleIdName. The parameter numberOfModuleInstances is set to the number of identifiers
in the array. Returns NULL if an exception has occurred.

26

SBWInteger *SBWGetExistingModuleInstances(SBWInteger *numberOfModuleInstances)

returns an array of module identifiers for all running module instances. The parameter
numberOfModuleInstances is set to the number of identifiers in the array. Returns NULL if
an exception has occurred.

SBWModuleDescriptor *SBWGetModuleDescriptors(
SBWBoolean includeRunning, SBWInteger *numberOfModuleDescriptors);

returns information from the broker on all the modules known to the broker. The param-
eter numberOfModuleDescriptors is set to the number of descriptors in the returned array.
This function returns data on all the modules registered with the broker and if the parameter
includeRunning is true includes data on unregistered running modules in the returned array.

6.5 Accessing Application Command Line

char *SBWCalculateCommandLine(const char *command)

returns the command line for registration of the given command in module mode. Normally
command is argv[0] passed to this application and the returned value is passed to
SBWModuleImplSetCommandLine. Returns NULL if an exception occurs.

This function is only useful if you wish to modify the command line registered for a given
module in the broker.

void SBWWindowsExtractCommandLine(int *argc, char ***argv)

Specific to Windows. Sets argc and argv to values corresponding to those passed to an ANSI
main function for this application. To be used inside Windows non-console applications.

6.6 Module and Service registration functions

The following functions are in the API:

SBWBoolean SBWCreateModuleImpl(
const char *uniqueName,
const char *nameForDisplay,
SBWModuleManagementType type,
const char *help);

This function creates a new module implementation. uniqueName is the unique identifica-
tion string for the module. nameForDisplay is the humanly readable name for the module.
moduleCommand is the command that should be run in the current environment to invoke the
module. help is documentation for this module.

The type parameter is one of the following values:

SBW_UniqueModule = 0,
SBW_SelfManagedModule = 1,

This function returns false if an exception occurs, true otherwise.

SBWBoolean SBWModuleImplRegister()

registers this module with the SBW Broker, adding a persistent record of how to start the
module and list of services implemented by the module. Returns true if the function is successful
and false if the function raises an exception.

SBWBoolean SBWModuleImplEnableServices()

27

notifies the SBW Broker that this module’s services are operational and handles calls methods
on these services. Returns true if the function is successful and false if the function raises an
exception.

SBWBoolean SBWModuleImplSetCommandLine(const char *commandLine)

sets the command line required to start the module in module mode. Returns true if the
function is successful and false if the function raises an exception.

public SBWBoolean SBWModuleImplSetHandler(
const char *serviceName,
SBWHandler handler,
void *userData,
const char *signature,
SBWBoolean synchronized,
const char *help);

notifies SBW that the given handler is the implementation of the given method on the given
service. userData is passed to the handler on the method’s invocation. signature is a method
signature (see Section 3.3). synchronized, a boolean parameter, indicates whether the method
must not be run concurrent with other methods that have been registered with this parameter
set to 1. The synchronized parameter is equivalent to the Java synchronized keyword. help
is documentation for the method.

This function returns false if an exception occurs, true otherwise.

public SBWHandler SBWModuleImplGetHandler(
const char *serviceName, const char *methodName, void **userData);

returns a handler which is the implementation of the given method on the given service.
userData is set to whatever was passed to setHandler. Returns null if SBW has not been
notified of this handler or if another exception occurs

SBWBoolean SBWModuleImplAddService(
const char *serviceName, const char *serviceDisplayName,
const char *category, const char *help)

Notifies the SBW system that the service serviceName is provided by the given module i.e. adds
serviceName to the list of services provided by this module in the module registry. category
defines the interface class that this service complies with. help is documentation for this service.
Returns false if an exception has occurred, true otherwise.

SBWBoolean SBWModuleImplRun(int argc, char **argv, SBWBoolean waitForDisconnect)

argc and argv contain the argument data for this module. If this data contains the argument
-sbwmodule then the method provides services to other modules. If the argument data contains
the argument -sbwregister then the method registers this module with the broker. If the
method provides services to other modules and waitForDisconnect is true then the method
will block until the module is shutdown. This function returns false if an exception occurs.

6.7 Functions for accessing module instances

SBWModuleDescriptor *SBWModuleGetModuleDescriptor(SBWInteger moduleInstanceId);

returns information from the registry on the given module instance. This function returns null
if an exception occurs during its execution.

SBWInteger SBWModuleGetNumberOfServices(SBWInteger moduleInstanceId)

28

returns the number of services that exist on the the given module. returns -1 when an exception
occurs. Valid service identifier numbers for this module exist in the range 0 to n − 1 where n
is the value returned by this function.

SBWInteger SBWModuleFindServiceByName(
SBWInteger moduleInstanceId, const char *serviceName)

returns the service identifier number for the named service on the given module. returns -1 on
an exception.

SBWInteger *SBWModuleFindServicesByCategory(
SBWInteger moduleInstanceId, const char *category, SBWInteger *numberOfServices)

returns an array of service identifier numbers for the services on the given module in the given
category. returns null when an exception occurs. The integer pointed to by numberOfServices
is set to the number of elements in the returned array. This function returns null when an
exception occurs.

SBWBoolean SBWModuleShutdown(SBWInteger moduleInstanceId)

requests that the broker disconnects from the given module. Returns false if an exception
occurs. This function should always be called when an application no longer requires the
services of a given self managed module.

6.8 Functions for accessing services

SBWServiceDescriptor *SBWServiceGetDescriptor(
SBWInteger moduleInstanceId, SBWInteger serviceId)

returns a service descriptor corresponding to the given service. Returns null if an exception
occurs.

SBWInteger SBWServiceGetNumberOfMethods(
SBWInteger moduleInstanceId, SBWInteger serviceId)

returns the number of methods on the given service. returns -1 if an exception occurs. A
method id for the given service is valid if the method id is in the range 0 to n − 1 where n is
the value returned by this function.

SBWInteger SBWServiceGetMethod(
SBWInteger moduleInstanceId, SBWInteger serviceId, const char *signature)

returns the method id corresponding to the given signature. returns -1 if an exception occurs.

6.9 Functions for accessing and invoking methods

char *SBWMethodGetName(
SBWInteger moduleInstanceId, SBWInteger serviceId, SBWInteger methodId)

returns the name of the given method. Returns null if an exception occurs.

char *SBWMethodGetSignatureString(
SBWInteger moduleInstanceId, SBWInteger serviceId, SBWInteger methodId)

returns the signature of the given method. Returns null if an exception occurs.

char *SBWMethodGetHelp(
SBWInteger moduleInstanceId, SBWInteger serviceId, SBWInteger methodId)

returns documentation for the given method. Returns null if an exception occurs.

public SBWBoolean SBWMethodCall(

29

SBWInteger moduleInstanceId,
SBWInteger serviceId,
SBWInteger methodId,
const char *signature,
...);

public SBWBoolean SBWMethodSend(
SBWInteger moduleInstanceId,
SBWInteger serviceId,
SBWInteger methodId,
const char *signature, ...);

Send a message to the service, either blocking until the method has completed on the service
in the case of SBWMethodCall or returning immediately in the case of SBWMethodSend.

signature indicates the form of the variable argument sequence. The syntax for this string is
defined in section 3.3.

The variable argument sequence is divided into two halves: the first half consists of the call
arguments and the second half consists of a pointer to a variable that can receive the result of
the call. Only call arguments should be passed to SBWMethodSend.

signature indicates the types of the parameters passed in the variable argument list. The
correspondence between the types in the signature string and C types is shown in table 1.

Arrays are passed as a sequence of parameters: an integer for each dimension, indicating the
size of the dimension, followed by a pointer to the array itself. Array return values are treated
the same way except that the size parameters should be pointers to integers followed by a
pointer to an array pointer.

Lists are passed as arguments as SBWDataBlockWriter *. SBWDataBlockReader ** parame-
ters should be passed as the last argument to fetch a list return value. Lists can be members
of arrays. Refer to section 6.11 for more details on manipulating these structures.

An example of two consistent calls to SBWMethodCall would be:

SBWInteger arg = 0;
SBWDouble result ;
SBWInteger sizeIn = 3, SizeOut;
SBWDouble argArray[] = { 0.0, 0.1, 0.2 };

if (!SBWMethodCall(module, service, method1, "double f(int)", arg, &result))
{

/* Handle error */

}

if (!SBWMethodCall(
module,
service,
method2,
"int[] f(double[])",
sizeIn,
argArray,
&sizeOut,
&resultArray);

{
/* Handle error */

}

SBWMethodCall and SBWMethodSend return false if an exception occurs.

SBWSignature *SBWMethodGetSignature(
SBWInteger moduleInstanceId, SBWInteger serviceId, SBWInteger methodId)

returns a parse structure for the signature of this method, returns null if an exception occurred

30

6.10 Signatures

SBWSignatureElement **SBWSignatureGetArguments(
SBWSignature *, SBWInteger *numberOfArguments)

Sets the numberOfArguments argument to the number of arguments in the array. This function
returns the SBWSignatureElement array for the arguments in the signature.

SBWSignatureType *SBWSignatureGetReturnType(SBWSignature *)

returns the result type of the give signature.

char *SBWSignatureGetName(SBWSignature *)

returns the name part of a signature

char *SBWSignatureElementGetName(SBWSignatureElement *)

returns the name of the given argument, null if its not present

SBWSignatureType *SBWSignatureElementGetType(SBWSignatureElement *)

returns the type of the argument

SBWDataBlockType SBWSignatureTypeGetType(SBWSignatureType *)

returns the type of the given object

SBWSignatureType SBWSignatureTypeGetArrayInnerType(SBWSignatureType *)

returns the type of the objects containing inside the parameter assuming that the parameter is
an array. Returns SBWErrorType if parameter not an array type

SBWInteger SBWSignatureTypeGetArrayDimensions(SBWSignatureType *)

returns the number of dimensions of the parameter assuming that the parameter is an array.
Returns -1 if this is not an array type

SBWSignatureElement **SBWSignatureTypeGetListContents(
SBWSignatureType *, SBWInteger *numberOfArguments)

returns the SBWSignatureElement array for the contents of the parameter assuming that the
parameter is a list . sets numberOfArguments to the number of objects in the array. Returns
NULL if the parameter is not a list type.

6.11 Serialization of Data

SBW uses data serialization to transmit argument and result data between callers and method
implementations. Data is serialized into SBWDataBlockWriter structures and serialized out
of SBWDataBlockReader structures. These structures are used recursively: SBW list data is
stored into SBWDataBlockWriter structures and copied out of SBWDataBlockReader struc-
tures.

6.11.1 SBWDataBlockWriter

The interface to SBWDataBlockWriter consists of the following functions:

SBWDataBlockWriter *SBWCreateSBWDataBlockWriter();

Returns a pointer to a new empty SBWDataBlockWriter object.

SBWBoolean SBWWrite(SBWDataBlockWriter *, const char *argumentList, ...);

31

The ... refers to a variable argument list of values and objects to be appended to the
SBWDataBlockWriter. The argument argumentList, which must in the syntax defined by
the ArgumentList production in section 3.3, indicates what arguments have been supplied in
variable argument list. Arrays should be added as a sequence of arguments: an integer for each
dimension, indicating the size of the dimension, followed by a pointer to the array itself. Lists
are passed, recursively, as SBWDataBlockWriter *.

SBWWrite returns false when an exception occurs.

For example the following is a consistent call to SBWWrite:

SBWInteger i;
SBWDouble d;
char *s = "hello";
SBWInteger a[4] = { 0, 1, 2, 3 };

if (!SBWWrite(SBWDataBlockWriter, "int, double, string, int[]", i, d, s, 4, a))
/* handle error */

6.11.2 SBWDataBlockReader

The C interface to SBWDataBlockReader consists of the following function:

SBWBoolean SBWRead(SBWDataBlockReader *, const char *argumentList, ...);

The ... refers to a variable argument list of values and objects to be extracted from the
SBWDataBlockReader. In the argumentList (see Section 3.3) the types, ’int’, ’double’, ’string’,
’boolean’, ’byte’ and list, refer to the scalar types SBWInteger *, SBWDouble *, char **,
SBWBoolean, unsigned char * and SBWDataBlockReader ** respectively in the variable ar-
gument list. The objects pointed to by the arguments in the variable argument list section are
set by SBWRead.

SBWRead returns false when an exception occurs.

Arrays are extracted by supplying a sequence of arguments: an integer pointer for each dimen-
sion followed by a pointer to a pointer for the array. The integer values are set to the size of
the array dimensions. The array pointer is set to point to the extracted array.

For example the following is a consistent call to SBWRead:

SBWInteger i;
SBWDouble d;
char *s = "hello";
SBWInteger *a;
SBWInteger sizeOfA;

if (!SBWRead(
SBWDataBlockReader,
"int, double, string, int[]",
&i, &d, &s, &sizeOfA, &a))

/* handle error */

The following functions allow a data block of an unknown format to be decoded.

SBWDataBlockType SBWGetNextType(SBWDataBlockReader *);

returns the type of the next item in the reader.

DataBlockType SBWGetNextArrayType(SBWDataBlockReader *);

Assuming that the next object in the reader is an array returns the type of item in the array.

SBWInteger SBWGetNextArrayDimensions(SBWDataBlockReader *);

32

Assuming that the next object in the reader is an array returns the number of dimensions of
the array.

6.12 Exceptions

The C library stores exceptions as they occur. The best information concerning an error will be
stored in the pending exception after the function call where that error occurs. Subsequent API
calls will replace that error information with exceptions that do not have the same contextual
information as the original error. The functions below allow the currently stored exception to
be examined. Use SBWExceptionGetCode() to find out if an exception is pending.

The following functions are in the C API to support exception handling:

char *SBWExceptionGetMessage();

returns the message associated with the currently stored exception

char *SBWExceptionGetDetailedMessage();

returns the detailed message associated with the currently stored exception

void SBWSetException(const char *userMessage, const char *developerMessage);

creates and stores an application exception condition. This function should be called from
within a method implementation to indicate that an exception has occurred.

int SBWExceptionGetCode();

returns the exception type code for the pending exception. This function returns -1 if no
exception is pending. The API provides an enumeration SBWExceptionType which provides
identifiers for the various exception codes, 0 to 16, returned by this function (see Tables 6
and 7).

6.13 Events

The following API functions allow callback functions to be attached to the SBW library to
allow SBW applications to respond to events occurring in the broker:

void SBWRegisterShutdownListener(SBWSimpleListener function)

Attaches the given function to the SBW library. Any number of functions can be attached.
function will be called when the broker disconnects from this module.

void SBWRegisterModuleShutdownListener(SBWModuleListener function);

Attaches the given function to the SBW library. Any number of functions can be attached.
function will be called whenever the broker disconnects from other modules.

void SBWRegisterModuleStartupListener(SBWModuleListener function);

Attaches the given function to the SBW library. Any number of functions can be attached.
function will be called whenever the broker connects to other modules.

void SBWRegisterRegistrationChangeListener(SBWSimpleListener function);

Attaches the given function to the SBW library. Any number of functions can be attached.
function will be called whenever the broker registry changes.

void SBWRemoveShutdownListener(SBWSimpleListener function);

Removes function that was attached to the API by SBWRegisterShutdownListener

33

Exception Code Identifier Meaning

0 SBWApplicationExceptionCode This is an Application-specific ex-
ception, thrown deliberately by a
module. This is the only type of
exception that can be created by a
module in SBW.

1 SBWRawExceptionCode Throw by API when platform excep-
tions occur and the context of the
error has been lost

2 SBWCommunicationExceptionCode Communications between a caller
and receiver failed, possibly due to
a lost connection.

3 SBWModuleStartExceptionCode An attempt to start a new module
failed.

4 SBWTypeMismatchExceptionCode The type of data element that was
attempted to be read from a mes-
sage was not the type found. This
often indicates a mismatch between
the messages expected by a caller
and receiver.

5 SBWIncompatibleMethodSignatureExceptionCode An interface or class definition uses
method signatures that don’t corre-
spond to the signatures on the cor-
responding service.

6 SBWModuleIdSyntaxExceptionCode Indicates that a supplied module in-
stance identifier has incorrect syn-
tax.

Table 6: Exception Codes 0 to 6

void SBWRemoveModuleShutdownListener(SBWModuleListener function);

Removes function that was attached to the API by SBWRegisterModuleShutdownListener

void SBWRemoveModuleStartupListener(SBWModuleListener function);

Removes function that was attached to the API by SBWRegisterModuleStartupListener

void SBWRemoveRegistrationChangeListener(SBWSimpleListener function);

Removes function that was attached to the API by
SBWRegisterRegistrationChangeListener

A Standard Low Level Interfaces

This appendix describes the standard interfaces that are used by the libraries to implement the
API described in this document.

A.1 Module System Service

All modules, including the broker, implement the service with index -1 which implements
services which are not directly accessible by the API but are used to implement the API. The

34

Exception Code Identifier Meaning

7 SBWIncorrectCategorySyntaxExceptionCode A supplied category string has in-
correct syntax. This is thrown by
methods that find or search services
by categories.

9 SBWServiceNotFoundExceptionCode Requested service is not present on
this module.

10 SBWMethodTypeNotBlockTypeExceptionCode The supplied class uses types which
are not SBW message data block
types.

11 SBWMethodAmbiguousExceptionCode The function SBWServiceGetMethod

throws this exception to indicate
that the given signature or signature
component matches with more than
one method on the given service.

12 SBWUnsupportedObjectTypeExceptionCode The library encountered an object
of a type that it cannot encode or
decode from a message block.

13 SBWMethodNotFoundExceptionCode The supplied method identification
number, signature or partial sig-
nature does not match any of the
methods that exist on a given ser-
vice. This can occur if a caller uses
the low-level SBW API to attempt
to invoke a method on a service and
the service has no method with that
index.

14 SBWSignatureSyntaxExceptionCode Thrown if a signature string does
not contain a valid SBW signature.

15 SBWModuleDefinitionExceptionCode Thrown if any aspect of a mod-
ule definition is incorrect by the
SBWCreateModuleImpl function .

16 SBWModuleNotFoundExceptionCode Thrown if the given module identi-
fication name does not match any
module known to SBW.

Table 7: Exception Codes 7 to 16

methods on this service have predefined method identification numbers.

string[] getServices()

returns the names of services implemented on the module. The index of each service gives the
service identification number for the service. This method has method identification number 0.

string[] getMethods(int serviceId)

returns the method signatures of the given service. This method has method identification
number 1.

void onOtherModuleInstanceShutdown(int moduleInstanceId)

called when another module shuts down. This method has method identification number 2.

35

void shutdown()

terminates the module. This method has method identification number 3.

string getMethodHelp(int serviceId, int methodId)

returns documentation for the given method. This method has method identification number
4.

void onOtherModuleInstanceStartup(int moduleInstanceId)

called when another module instances starts. This method has method identification number
5.

void onRegistrationChange(int moduleInstanceId)

called when the registration data in the broker changes. This method has method identification
number 6.

A.2 Broker System Service

The SBW Broker behaves as ubiquitous module -1 which implements a service “SYSTEM” to
support the module API. This service, which does not use hard coded method identification
numbers:

int getModuleInstance(string moduleIdentificationName)

returns the module instance identifier to a instance of the given module, if the module instance
is static then an existing instance identifier is returned otherwise an new instance launched. A
new instance is always launched if no existing instance exists.

The Broker records that the caller is taking a reference to the returned module.

{
string moduleIdentificationName,
string moduleDisplayName,
string serviceIdentificationName,
string serviceDisplayName,
string serviceCategory

}[] findServices(string category, bool recursive)

returns the service information for those services listed in the registry file in the given category.

int getLocalModuleInstanceId(string moduleInstanceIdentifier)

returns the local module identifier for a given module instance. the Broker records that the
caller is taking a reference to the given module

string[] getServiceCategories(string category)

returns all the immediate subcategories of the given category (category can be empty to indicate
the top level).

void release(int moduleId)

disconnects the broker from the module

{
string moduleIdentificationName,
string moduleDisplayName,
int managementTypeCode,
string commandLine,
string help

36

} getModuleDescriptor(string moduleName, boolean includeRunning)

returns the module descriptor for the named module.

{
string moduleIdentificationName,
string moduleDisplayName,
int managementTypeCode,
string commandLine,
string help

} getModuleDescriptor(int moduleId)

returns the module descriptor for the given module instance.

{
string moduleIdentificationName,
string moduleDisplayName,
int managementTypeCode,
string commandLine,
string help

}[] getModuleDescriptors(boolean includeRunning)

returns the module descriptor for all the modules known to SBW.

{
string moduleIdentificationName,
string serviceIdentificationName,
string serviceDisplayName,
string serviceCategory,
string help

} getServiceDescriptor(int moduleId, string serviceName)

returns the service descriptor for the named service on the given module instance

{
string moduleIdentificationName,
string serviceIdentificationName,
string serviceDisplayName,
string serviceCategory,
string help

} getServiceDescriptor(int moduleId, int serviceId)

returns the service descriptor for the given service on the given module

{
string moduleIdentificationName,
string serviceIdentificationName,
string serviceDisplayName,
string serviceCategory,
string help

}[] getServiceDescriptors(int moduleId)

returns the service descriptors for all the services on the given module

string getVersion()

returns the version of the broker

int[] getExistingModuleInstanceIds()

return the module instances that are currently connected to the broker

void unregisterModule(string moduleIdentificationName)

removes all the information for the given module from the registry file.

37

void registerService(
string moduleIdentificationName,
string serviceIdentificationName,
string serviceDisplayName,
string category,
string help)

adds a record for the given service for the given module to the registry file

void registerModule(
string moduleIdentificationName,
string nameForDisplay,
int moduleType,
string commandLine,
string helpString)

adds a record for the given module to the registry file. The int parameter indicates the type of
the module according to the following encoding:

• 0 Unique

• 1 self managing

38

References

Arkin, A. P. (2001). Simulac and Deduce. Available via the World Wide Web at http:
//gobi.lbl.gov/~aparkin/Stuff/Software.html.

Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J., and Oliphant, T. (2001). Numerical
Python. Available via the World Wide Web at http://www.numpy.org.

Bray, D., Firth, C., Le Novère, N., and Shimizu, T. (2001). StochSim. Available via the World
Wide Web at http://www.zoo.cam.ac.uk/comp-cell/StochSim.html.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Extensible markup language (XML)
1.0, W3C recommendation 10-February-1998. Available via the World Wide Web at http:
//www.w3.org/TR/1998/REC-xml-19980210.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., , and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons.

Finney, A., Hucka, M., Sauro, H. M., and Bolouri, H. (2001a). Systems Biology Workbench
C++ programmer’s manual. Available via the World Wide Web at http://www.cds.caltech.
edu/erato/sbw/docs/api/.

Finney, A., Hucka, M., Sauro, H. M., and Bolouri, H. (2001b). Systems Biology Workbench
Java programmer’s manual. Available via the World Wide Web at http://www.cds.caltech.
edu/erato/sbw/docs/api/.

Ginkel, M., Kremling, A., Tränkle, F., Gilles, E. D., and Zeitz, M. (2000). Application of
the process modeling tool ProMot to the modeling of metabolic networks. In Troch, I. and
Breitenecker, F., editors, Proceedings of the 3rd MATHMOD, pages 525–528.

Goryanin, I. (2001). DBsolve: Software for metabolic, enzymatic and receptor-ligand bind-
ing simulation. Available via the World Wide Web at http://websites.ntl.com/~igor.
goryanin/.

Goryanin, I., Hodgman, T. C., and Selkov, E. (1999). Mathematical simulation and analysis
of cellular metabolism and regulation. Bioinformatics, 15(9):749–758.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001a). Introduction to the Systems
Biology Workbench. Available via the World Wide Web at http://www.cds.caltech.edu/
erato/sbw/docs/intro.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001b). Systems Biology Markup
Language (SBML) Level 1: Structures and facilities for basic model definitions. Available via
the World Wide Web at http://www.cds.caltech.edu/erato.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., and Kitano, H. (2001c).
The ERATO Systems Biology Workbench: Architectural evolution. In Yi, T.-M., Hucka, M.,
Morohashi, M., and Kitano, H., editors, Proceedings of the Second International Conference
on Systems Biology, pages 352–361. Omnipress, Inc.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., and Kitano, H. (2002). The
ERATO Systems Biology Workbench: Enabling interaction and exchange between software
tools for computational biology. In Altman, R. B., Dunker, A. K., Hunker, L., Lauderdale, K.,
and Klein, T. E., editors, Pacific Symposium on Biocomputing 2002. World Scientific Press.

Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with
Gepasi 3. Trends in Biochemical Sciences, 22:361–363.

Mendes, P. (2001). Gepasi 3.21. Available via the World Wide Web at http://www.gepasi.
org.

39

http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://gobi.lbl.gov/~aparkin/Stuff/Software.html
http://www.numpy.org
http://www.zoo.cam.ac.uk/comp-cell/StochSim.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.cds.caltech.edu/erato/sbw/docs/api/
http://www.cds.caltech.edu/erato/sbw/docs/api/
http://www.cds.caltech.edu/erato/sbw/docs/api/
http://www.cds.caltech.edu/erato/sbw/docs/api/
http://websites.ntl.com/~igor.goryanin/
http://websites.ntl.com/~igor.goryanin/
http://www.cds.caltech.edu/erato/sbw/docs/intro
http://www.cds.caltech.edu/erato/sbw/docs/intro
http://www.cds.caltech.edu/erato
http://www.gepasi.org
http://www.gepasi.org

Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in an intracellular
signalling pathway. Journal of Theoretical Biology, 192:117–128.

Sauro, H. M. (2000). Jarnac: A system for interactive metabolic analysis. In Hofmeyr, J.-
H. S., Rohwer, J. M., and Snoep, J. L., editors, Animating the Cellular Map: Proceedings of
the 9th International Meeting on BioThermoKinetics. Stellenbosch University Press.

Sauro, H. M. and Fell, D. A. (1991). SCAMP: A metabolic simulator and control analysis
program. Mathl. Comput. Modelling, 15:15–28.

Sauro, H. M., Hucka, M., Finney, A., and Bolouri, H. (2001). The Systems Biology Workbench
concept demonstrator: Design and implementation. Available via the World Wide Web at
http://www.cds.caltech.edu/erato/sbw/docs/detailed-design/.

Schaff, J., Slepchenko, B., and Loew, L. M. (2000). Physiological modeling with the Virtual
Cell framework. In Johnson, M. and Brand, L., editors, Methods in Enzymology, volume 321,
pages 1–23. Academic Press, San Diego.

Schaff, J., Slepchenko, B., Morgan, F., Wagner, J., Resasco, D., Shin, D., Choi, Y. S., Loew,
L., Carson, J., Cowan, A., Moraru, I., Watras, J., Teraski, M., and Fink, C. (2001). Virtual
Cell. Available via the World Wide Web at http://www.nrcam.uchc.edu.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K.,
Tanida, S., Yugi, K., Venter, J. C., and Hutchison, C. (1999). E-Cell: Software environment
for whole cell simulation. Bioinformatics, 15(1):72–84.

Tomita, M., Nakayama, Y., Naito, Y., Shimizu, T., Hashimoto, K., Takahashi, K., Matsuzaki,
Y., Yugi, K., Miyoshi, F., Saito, Y., Kuroki, A., Ishida, T., Iwata, T., Yoneda, M., Kita,
M., Yamada, Y., Wang, E., Seno, S., Okayama, M., Kinoshita, A., Fujita, Y., Matsuo, R.,
Yanagihara, T., Watari, D., Ishinabe, S., and Miyamoto, S. (2001). E-Cell. Available via the
World Wide Web at http://www.e-cell.org/.

40

http://www.cds.caltech.edu/erato/sbw/docs/detailed-design/
http://www.nrcam.uchc.edu
http://www.e-cell.org/

	Introduction
	A Brief Tour of SBW
	Overview of SBW from a Programmer's Perspective

	Foundations of SBW
	Message Block Types
	Module Management Types
	Method Signatures
	Module Names
	Service Names
	Method Names

	Accessing the C API
	gcc on Linux
	Visual C++ on Windows Platforms: 95, 2000, 98, ME and XP

	Tutorials
	Implementing a Service
	Calling a Known Module
	Creating a menu of services from a service category

	C API Reference
	Types
	Object and Array ownership
	Connecting and Disconnecting from the Broker
	Module and Service Discovery functions
	Accessing Application Command Line
	Module and Service registration functions
	Functions for accessing module instances
	Functions for accessing services
	Functions for accessing and invoking methods
	Signatures
	Serialization of Data
	Exceptions
	Events

	Standard Low Level Interfaces
	Module System Service
	Broker System Service

	

